Skip to main content

A New System Approximation Approach for Modelling of DC–DC Converter

  • Conference paper
  • First Online:
Soft Computing: Theories and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1053))

  • 1165 Accesses

Abstract

In power electronic circuit design and analysis, Cuk converter has significant contribution. This convert is used to obtain variable DC voltage. The conventional modelling of Cuk converter provides complex linear model. Therefore, this study suggests a method for modelling of DC–DC Cuk converter via system approximation approach. Firstly, the high dimensional complex model of Cuk converter is discussed then its approximated transfer function model is achieved using a hybrid approach. In this approach, the combination of Routh approximation method and meta-heuristic search optimization is utilized for modelling of Cuk converter. The performance characteristics of proposed approximated model are compared with previously presented models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paynter, H.M., Takahashi, Y.: A new method of evaluating dynamic response of counter flow and parallel flow heat exchanger. Trans. ASME, J. Dyn. Syst. Meas. Control 8, 749–753 (1956)

    Google Scholar 

  2. Shamash, Y.: Stable reduced order models using Pade type approximation. IEEE Trans. Autom. Control 19(5), 615–616 (1974)

    Article  Google Scholar 

  3. Lucas, T.N.: Factor division: a useful algorithm in model reduction. IEE Proc. D Control Theory Appl. 130(6), 362–364 (1983)

    Article  Google Scholar 

  4. Wan, B.W.: Linear model reduction using Mihailov criterion and Pade approximation technique. Int. J. Control 33(6), 1073–1089 (1981)

    Article  MathSciNet  Google Scholar 

  5. Pal, J.: System reduction by a mixed method. IEEE Trans. Autom. Control 25(5), 973–976 (1980)

    Article  MathSciNet  Google Scholar 

  6. Shamash, Y.: Stable reduced-order models using Pade type approximations. IEEE Trans. Autom. Control 19, 615–616 (1974)

    Article  Google Scholar 

  7. Krishnamurthy, V.V., Seshadri, V.: Model reduction using the Routh stability criterion. IEEE Trans. Autom. Control 23(3), 729–731 (1978)

    Article  Google Scholar 

  8. Chen, T.C., Chang, C.Y.: Reduction of transfer functions by the stability-equation method. J. Franklin Inst. 308(4), 389–404 (1979)

    Article  MathSciNet  Google Scholar 

  9. Ashoor, N., Singh, V.: A note on lower order modeling. IEEE Trans. Autom. Control 27(5), 1124–1126 (1982)

    Article  Google Scholar 

  10. Singh, V.: Non-uniqueness of model reduction using the Routh approach. IEEE Trans. Autom. Control 24(4), 650–651 (1979)

    Article  Google Scholar 

  11. Moore, B.C.: Principal component analysis in control system: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26(1), 17–36 (1981)

    Article  Google Scholar 

  12. Kokotovik, P.V., O’Malley, R.E., Sannuti, P.: Singular perturbation and order reduction in control theory—an overview. Automatica 12, 123–132 (1976)

    Article  MathSciNet  Google Scholar 

  13. Grimme, E.J.: Krylov projection methods for model reduction. Ph.D. thesis, ECE Department, U. Illinois, Urbana (1997)

    Google Scholar 

  14. Avoki, M.: Control of large dynamic system by aggregation. IEEE Trans. Autom. Control 13, 246–256 (1968)

    Article  Google Scholar 

  15. Sandberg, H., Rantzer, A.: Balanced truncation of linear time-varying systems. IEEE Trans. Autom. Control 49(2), 217–229 (2004)

    Article  MathSciNet  Google Scholar 

  16. Wittmuess, P., Tarin, C., Keck, A., Arnold, E., Sawodny, O.: Parametric model order reduction via balanced truncation with Taylor series representation. IEEE Trans. Autom. Control 61(11), 3438–3451 (2016)

    Article  MathSciNet  Google Scholar 

  17. Soloklo, H.N., Farsangi, M.M.: Multiobjective weighted sum approach model reduction by Routh-Pade approximation using harmony search. Turk. J. Elec. Eng. Comp. Sci. 21, 2283–2293 (2013)

    Article  Google Scholar 

  18. Ahamad, N., Sikander, A., Singh, G.: Substructure preservation based approach for discrete time system approximation. Microsys. Technol. 1–9 (2018)

    Google Scholar 

  19. Goyal, R., Parmar, G., Sikander, A.: A new approach for simplification and control of linear time invariant systems. Microsyst. Technol. 1–9 (2018)

    Google Scholar 

  20. Bhatt, R., Parmar, G., Gupta, R., Sikander, A.: Application of stochastic fractal search in approximation and control of LTI systems. Microsyst. Technol. 1–10 (2018)

    Google Scholar 

  21. Agarwal, J., Parmar, G., Gupta, R., Sikander, A.: Analysis of grey wolf optimizer based fractional order PID controller in speed control of DC motor. Microsyst. Technol. 1–10 (2018)

    Google Scholar 

  22. Sikander, A., Thakur, P.: Reduced order modelling of linear time invariant system using modified cuckoo search algorithm. Soft. Comput. 22(10), 3449–3459 (2017)

    Article  Google Scholar 

  23. Sikander, A., Prasad, R.: Reduced order modelling based control of two wheeled mobile robot. Int. J. Intell. Manuf. 1–11 (2017)

    Google Scholar 

  24. Sikander, A., Prasad, R.: New technique for system simplification using cuckoo search and ESA. Sadhana 42(9), 1453–1458 (2017)

    Article  MathSciNet  Google Scholar 

  25. Sikander, A., Prasad, R.: A new technique for reduced order modelling of linear time invariant system. IETE J. Res. 63(3), 316–324 (2017)

    Article  Google Scholar 

  26. Verma, P., Patel, N., Nair, N.K.C., Sikander, A.: Design of PID controller using cuckoo search algorithm for buck-boost converter of LED driver circuit. In: Proceedings of IEEE Southern Power Electronics Conference, University of Auckland, New Zealand, pp. 1–4, 5–8 Dec 2016

    Google Scholar 

  27. Sikander, A., Verma, P., Patel, N., Nair, N.-K.C.: Design of controller using reduced order modeling for LED driver circuit. In: Proceedings of IEEE International Conference on Innovative Smart Grid Technologies (ISGT Asia 2017), University of Auckland, New Zealand, pp. 1–5, 4–7 Dec 2017

    Google Scholar 

  28. Kushwaha, B.K., Narain, A.: Controller design for Cuk converter using model order reduction. In: 2nd International Conference on Power, Control and Embedded Systems, Allahabad, India, pp. 1–5, 17–19 Dec 2012

    Google Scholar 

  29. Vuthchhay, E., Unnat, P., Bunlaksananusorn, C.: Modeling of a SEPIC converter operating in continuous conduction mode. In: 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Pattaya, Thailand, pp. 136–9, 6–9 May 2009

    Google Scholar 

  30. Middlebook, R.D., Cuk, S.: A general unified approach to modeling switching-converter power stages. Int. J. Electr. 42(6), 521–550 (1977)

    Article  Google Scholar 

  31. Hutton, M.F., Friedland, B.: Routh approximations for reducing order of linear, time-invariant systems. IEEE Trans. Autom. Control 20(3), 329–337 (1975)

    Article  MathSciNet  Google Scholar 

  32. Yang, X.S., Deb, S.: Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer. Optim. 1, 330–343 (2009)

    Google Scholar 

  33. Kuo, B.C.: Automatic Control Systems, 7th edn. Prentice Hall Inc., Upper Saddle River (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiv Sagar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sikander, A., Singh, S.S., Verma, O.P., Sathiya, S., Sharma, V., Dutt, S. (2020). A New System Approximation Approach for Modelling of DC–DC Converter. In: Pant, M., Sharma, T., Verma, O., Singla, R., Sikander, A. (eds) Soft Computing: Theories and Applications. Advances in Intelligent Systems and Computing, vol 1053. Springer, Singapore. https://doi.org/10.1007/978-981-15-0751-9_124

Download citation

Publish with us

Policies and ethics