Skip to main content

Morphology and Cooling Rates of FeNi Metal–Sulfide Eutectic Blobs

  • Chapter
  • First Online:
Yanzhuang Meteorite: Mineralogy and Shock Metamorphism
  • 257 Accesses

Abstract

The metal-troilite blobs in the Yanzhuang shock-produced melt can be divided into three types: (i) blobs with dendritic texture, (ii) blobs with cellular texture, and (iii) irregular cellular blobs. All they are with textures of FeNi–FeS eutectic intergrowth aggregates. Based on the dendrite arm spacing or cell widths of blobs, the calculated cooling rates in melt pockets are 0.8–67.8 ℃/s, while those in melt veins are 103–2935 ℃/s. It was revealed that the local shock-induced melting took place at the surface of Yanzhuang parent body to form melt pockets of 4–35 mm in size. The melt veins formed by filling the fractures of shock melt are only 1–5 mm in width. This indicates that the Yanzhuang meteorite had subjected extremely heavy impact and in-situ melting event, and experienced very complicated rapid cooling process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrell SO, Long JVP, Oglive RE (1963) Nickel content of kamacite near the interface with taenite in iron meteorite. Nature 198:749–750

    Article  Google Scholar 

  • Begemann F, Palme H, Spettel B, Weber HW (1992) On the thermal history of heavily shocked Yanzhuang H chondrite. Meteoritics 27:174–178

    Article  Google Scholar 

  • Bennett ME, McSween HY (1995) Shock features in iron-nickel metal and troilite of L-group ordinary chondrites. Meteorit Planet Sci 31:255–264

    Article  Google Scholar 

  • Blau PJ, Goldstein JI (1975) Investigation and simulation of metallic spherules from lunar soils. Geochim Cosmochim Aata 39:305–324

    Article  Google Scholar 

  • Blau PJ, Axon HJ, Goldstein JI (1973) Investigation of the Canyon C Diablo metallic spheroids and their relationship to the breakup of the Canyon Diablo meteorite. J Geophys Res 78:363–374

    Article  Google Scholar 

  • Chen M (1992) Micromineralogy and shock effects in Yanzhuang chondrite (H6). Ph.D. thesis, Guangzhou Branch of the Institute of Geochemistry, Chinese Academy of Sciences, pp 1–95 (in Chinese with English abstract)

    Google Scholar 

  • Chen M, Xie XD, El Coresy A (1995) Nonequilibrium solidification and microstructures of metal phases in the shock induced melt of the Yanzhuang (H6) chondrite. Meteoritics 30:28–32

    Article  Google Scholar 

  • Chen M, Xie XD, El Goresy A, Wopenka B, Sharp TG (1998) Cooling rates in the shock veins of chondrites: constraints on the (Mg, Fe)2SiO4 polymorph transformations. Sci China D 41:522–528

    Google Scholar 

  • Jain VA, Lipschutz ME (1968) Implication of shock effects in iron meteorites. Nature 220:139–143

    Article  Google Scholar 

  • Li ZH, Xie XD, Zhang DT (1995) The spatiotemporal pattern of the metal FeNi melt solidification in space. Sci China D 38:457–465

    Google Scholar 

  • Mao YH, Wang DD, Zhang MC, Chen YH (1999) A study on cooling rate and micro-shape characteristic of the metal phase in rapidly solidified metal-troilite grains in Yanzhuang chondrite. Acta Mineral Sin 19:222–230

    Google Scholar 

  • Miyake GT, Goldstein JI (1974) Nedagolla, a remelted iron meteorite. Geochim Cosmochim Aata 38:747–755

    Article  Google Scholar 

  • Schmitt RT, Deutsch A, Stöffler D (1993) Shoeck effects in experimentally shocked sample of the H6 chondrite Kernouv (abstract). Meteoritics 28:431–432

    Google Scholar 

  • Scott ERD (1982) Origin of rapidly solidified metal-troilite grains in chondrites and iron meteorites. Geochim Cosmochim Aata 46:813–823

    Article  Google Scholar 

  • Stöffler D, Kell K, Scott ERD (1991) Shock metamorphism of ordinary chondrites. Geochim Cosmochim Aata 55:3845–3867

    Article  Google Scholar 

  • Taylor GJ, Heymann D (1971) Postshock thermal histories of reheated chondrites. J Geophys Res 76:1879–1895

    Article  Google Scholar 

  • Willis J, Goldsten JI (1981) A revision of metallographic cooling rate curves for chondrites. Lunar Planet Sci 12:1135‒1143

    Google Scholar 

  • Xie XD, Chen M (2018) Yanzhuang meteorite: mineralogy and shock metamorphism. Guangdong Science &Technology Press, Guangzhou, p 202 (in Chinese with English abstract)

    Google Scholar 

  • Xie XD, Li ZH, Wang DD, Liu JF, Hu RY, Chen M (1994) The new meteorite fall of Yanzhuang, A severely shocked H6 chondrite with black molten materials. Chin J Geochem 12:39–46

    Article  Google Scholar 

  • Xie XD, Sun ZY, Chen M (2011) The distinct morphological and petrological features of shock melt veins in the Suizhou L6 chondrite. Meteorit Planet Sci 46:459–469

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiande Xie .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Guangdong Science & Technology Press Co., Ltd and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xie, X., Chen, M. (2020). Morphology and Cooling Rates of FeNi Metal–Sulfide Eutectic Blobs. In: Yanzhuang Meteorite: Mineralogy and Shock Metamorphism. Springer, Singapore. https://doi.org/10.1007/978-981-15-0735-9_7

Download citation

Publish with us

Policies and ethics