Skip to main content

Materials in Colorimetric Detection of Water Pollutants

  • Chapter
  • First Online:

Part of the book series: Advanced Functional Materials and Sensors ((AFMS))

Abstract

Evolution in the sensor design and their potential usage in water quality monitoring has revealed the aptitude of material science in the environment protection practices. Consequently, the progress in scientific literature is rising to tail consistent and sophisticated sensory platforms. In this context, colorimetric sensors are categorised as benchmarked sensor models, owing to their cost effectiveness in sensor design, ease of analysis, on-site pollutant monitoring capability, circumvents the use of multifaceted instrumentation and most importantly, user-friendliness. This chapter is focussed on the potential use of colorimetric sensors for the water-pollutant sensing and discusses the promising prospects of sensor developments (from choice of material to read-out tools) to assist nascent researchers to review the principles, mechanistic and advancements in existing trends in colorimetric sensory probes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rasheed, T., et al. (2019). Self-assembly of alternating copolymer vesicles for the highly selective, sensitive and visual detection and quantification of aqueous Hg2+. Chemical Engineering Journal, 358, 101–109.

    Article  CAS  Google Scholar 

  2. Madhupriya, S., & Elango, K. P. (2012). Highly selective colorimetric sensing of Cu (II) ions in aqueous solution via modulation of intramolecular charge transfer transition of aminonaphthoquinone chemosensor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97, 100–104.

    Article  CAS  Google Scholar 

  3. Li, Y., et al. (2011). Novel hemicyanine dye as colorimetric and fluorometric dual-modal chemosensor for mercury in water. Organic & Biomolecular Chemistry, 9(8), 2606–2609.

    Article  CAS  Google Scholar 

  4. Petdum, A., et al. (2018). Colorimetric and fluorescent sensing of a new FRET system via [5] helicene and rhodamine 6G for Hg2+ detection. New Journal of Chemistry, 42(2), 1396–1402.

    Article  CAS  Google Scholar 

  5. Das, S., et al. (2016). FRET-based fluorescence ratiometric and colorimetric sensor to discriminate Fe3+ from Fe2+. New Journal of Chemistry, 40(7), 6414–6420.

    Article  CAS  Google Scholar 

  6. Annadhasan, M., et al. (2014). Green synthesized silver and gold nanoparticles for colorimetric detection of Hg2+, Pb2+, and Mn2+ in aqueous medium. ACS Sustainable Chemistry & Engineering, 2(4), 887–896.

    Article  CAS  Google Scholar 

  7. Chen, L., et al. (2019). Novel colorimetric method for simultaneous detection and identification of multimetal ions in water: Sensitivity, selectivity, and recognition mechanism. ACS Omega, 4(3), 5915–5922.

    Article  CAS  Google Scholar 

  8. Pramanik, K., Sarkar, P., & Bhattacharyay, D. (2019). Semi-quantitative colorimetric and supersensitive electrochemical sensors for mercury using rhodamine b hydrazide thio derivative. Journal of Molecular Liquids, 276, 141–152.

    Article  CAS  Google Scholar 

  9. Zhang, Y., et al. (2019). A sensitive near-infrared fluorescent probe for detecting heavy metal Ag+ in water samples. Sensors, 19(2).

    Google Scholar 

  10. Climent, E., et al. (2018). Mix-&-read determination of Mercury(II) at trace levels with hybrid mesoporous silica materials incorporating fluorescent probes by a simple mix-&-load technique. Chemistryopen, 7(12), 957–968.

    Article  CAS  Google Scholar 

  11. Li, F., et al. (2019). Highly selective fluorescent probe for Hg2+ and MnO4 by the two-fold interpenetrating metal-organic framework with nitro functionalized linkers. Journal of Solid State Chemistry, 270, 509–515.

    Article  CAS  Google Scholar 

  12. Resch-Genger, U., et al. (2008). Quantum dots versus organic dyes as fluorescent labels. Nature Methods, 5(9), 763.

    Article  CAS  Google Scholar 

  13. Lu, F., et al. (2019). Highly fluorescent nitrogen-doped graphene quantum dots’ synthesis and their applications as Fe(III) ions sensor. International Journal of Optics, 2019.

    Google Scholar 

  14. Wang, J., et al. (2019). A fluorescent nanoprobe based on HgS/ZnS core/shell quantum dots for in-situ rapid visual detection of Cr3+. Journal of Nanoparticle Research, 21(3).

    Google Scholar 

  15. Boruah, B. S., Daimari, N. K., & Biswas, R. (2019). Functionalized silver nanoparticles as an effective medium towards trace determination of arsenic (III) in aqueous solution. Results in Physics, 12, 2061–2065.

    Article  Google Scholar 

  16. Wang, N., et al. (2019). Synthesis of fluorescent copper nanoparticles and ultrasensitive free label detection of Ag+. Journal of Nanomaterials, 2019.

    Google Scholar 

  17. Sun, Y., et al. (2019). A portable ratiometric fluorescent strip for sensitive determination of mercuric ions. Journal of Photochemistry and Photobiology a-Chemistry, 374, 68–74.

    Article  CAS  Google Scholar 

  18. Deng, S., Zhang, G., & Wang, P. (2018). Visualized fibrous adsorbent prepared by the microwave-assisted method for both detection and removal of heavy metal ions. ACS Sustainable Chemistry & Engineering, 7(1), 1159–1168.

    Article  Google Scholar 

  19. Khairy, G. M., & Duerkop, A. (2019). Dipsticks and sensor microtiterplate for determination of copper (II) in drinking water using reflectometric RGB readout of digital images, fluorescence or eye-vision. Sensors and Actuators B-Chemical, 281, 878–884.

    Article  CAS  Google Scholar 

  20. Mujawar, L. H., & El-Shahawi, M. S. (2019). Rapid and sensitive microassay for trace determination and speciation of Cu2+ on commercial book-paper printed with nanolitre arrays of novel chromogenic reagent. Microchemical Journal, 146, 434–443.

    Article  CAS  Google Scholar 

  21. Nie, K., et al. (2019). Pyridyl DPP based soluble nanoaggregates for ratiometric/fluorescent detection of Cu2+/Hg2+ in water. Journal of Luminescence, 208, 408–414.

    Article  CAS  Google Scholar 

  22. Berlina, A. N., et al. (2019). Rapid visual detection of lead and mercury via enhanced crosslinking aggregation of aptamer-labeled gold nanoparticles. Journal of Nanoscience and Nanotechnology, 19(9), 5489–5495.

    Article  Google Scholar 

  23. Wang, L., et al. (2019). Facile preparation of amino-carbon dots/gold nanoclusters FRET ratiometric fluorescent probe for sensing of Pb2+/Cu2+. Sensors and Actuators B-Chemical, 282, 78–84.

    Article  CAS  Google Scholar 

  24. Li, C.-R., et al. (2019). Amplified colorimetric detection of Ag+ based on Ag+ -triggered peroxidase-like catalytic activity of ZIF-8/GO nanosheets. Sensors and Actuators B-Chemical, 284, 213–219.

    Article  CAS  Google Scholar 

  25. Wang, X., et al. (2019). Green chemical method for the synthesis of chromogenic fiber and its application for the detection and extraction of Hg2+ and Cu2+ in environmental medium. Journal of Hazardous Materials, 364, 339–348.

    Article  CAS  Google Scholar 

  26. Zhang, N., et al. (2019). Electrospun nanofibrous cellulose acetate/curcumin membranes for fast detection of Pb ions. Journal of Nanoscience and Nanotechnology, 19(2), 670–674.

    Article  CAS  Google Scholar 

  27. Deng, S., Zhang, G., & Wang, P. (2019). Visualized fibrous adsorbent prepared by the microwave-assisted method for both detection and removal of heavy metal ions. ACS Sustainable Chemistry & Engineering, 7(1), 1159–1168.

    Article  CAS  Google Scholar 

  28. Kong, H., et al. (2012). Protein discrimination using fluorescent gold nanoparticles on plasmonic substrates. Analytical Chemistry, 84(10), 4258–4261.

    Article  CAS  Google Scholar 

  29. Lu, F., et al. (2019). Highly fluorescent nitrogen-doped graphene quantum dots’ synthesis and their applications as Fe (III) ions sensor. International Journal of Optics, 2019.

    Google Scholar 

  30. Thermo Fisher Scientific. (2019). Orion™ AQUAfast AQ4000 colorimeter. Available from https://www.thermofisher.com/order/catalog/product/AC2V16.

  31. Glacierclean. (2019). Mobile water kit (MWK). Available from https://www.glaciercleantech.com/innovation/.

  32. Merck. (2018). Test strips, MQuant. Available from http://www.merckmillipore.com/IN/en/products/analytics-sample-prep/test-kits-and-photometric-methods/visual-tests-for-semi-quantitative-analyses/test-strips-mquant/q42b.qB.2.IAAAE_CBZ3.Lxj,nav?ReferrerURL=https%3A%2F%2Fwww.google.co.in%2F.

  33. StripScan, M. (2018). MQuant® stripscan, digital test strip readout, Sigma-Aldrich. Available from https://itunes.apple.com/us/app/mquant-stripscan/id1362147895?mt=8.

  34. Merck. (2018). Colorimetric test kits. Available from: https://www.merckmillipore.com/IN/en/products/analytics-sample-prep/test-kits-and-photometric-methods/visual-tests-for-semi-quantitative-analyses/colorimetric-test-kits/LIib.qB.OTYAAAE_cvZ3.Lxi,nav?ReferrerURL=https%3A%2F%2Fwww.google.co.in%2F.

  35. Instruments, H. (2019). Colorimetric chemical kits. Available from https://hannainst.in/products/chemical-test-kits.html.

  36. Elabscience. (2019). Urea colorimetric kit. Available from https://www.elabscience.com/p-urea_colorimetric_assay_kit_(diacetyl_oxime_colorimetry)-41552.html.

  37. VitalityPlus. (2018). Heavy metal test kit. Available from https://vitalityplusaustralia.com/ph-testing/other-testing/heavy-metal-test-kits/heavy-metal-test-kit.

  38. Libelium. (2019). Waspmote smart water Available from http://www.libelium.com/smart-water-sensors-to-monitor-water-quality-in-rivers-lakes-and-the-sea/.

  39. SenSafe®. (2019). SenSafe® water metals check. Available from https://sensafe.com/sensafe-water-metals-check/.

  40. Parmer, C. (2019). NECi colorimetric nitrate water test kit. Available from https://www.coleparmer.in/i/neci-colorimetric-nitrate-water-test-kit-standard-range-50-pk/0554323.

  41. MicroWaterman. (2018). TotalCARE heavy metal screen test. Available from https://microwaterman.com/Heavy_Metal_Test_Kits/heavy-metal_Quick_test_kit.htm.

  42. CHEMetrics. (2019). Iron test kit. Available from https://www.chemetrics.com/index.php?route=product/category&path=59_93.

  43. Products, A. (2018). GHM-01 detector. Available from http://heavymetaldetection.com/detectors-for-common-heavy-metals.

  44. Systems, I.T. eXact iDip® Smart Photometer System®. [cited 2018; Available from: https://sensafe.com/exact-idip/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Pooja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, R., Thakur, A., Kumar, P., Pooja, D. (2020). Materials in Colorimetric Detection of Water Pollutants. In: Pooja, D., Kumar, P., Singh, P., Patil, S. (eds) Sensors in Water Pollutants Monitoring: Role of Material. Advanced Functional Materials and Sensors. Springer, Singapore. https://doi.org/10.1007/978-981-15-0671-0_8

Download citation

Publish with us

Policies and ethics