Advertisement

Adaptive Encryption Technique for Collaborative Cloud Environments

Chapter
  • 358 Downloads
Part of the Studies in Big Data book series (SBD, volume 67)

Abstract

In recent times, the data storage in collaborative cloud environment has distorted a lot when compared with prior times. Security flattering is one of the major imperative challenges in database storage and classification. Data stored in databases are susceptible and thus focusing the safety only on the susceptible data that minimizes the delays or troubles in the classification. This paper describes an extremely innovative and novel methodology for securing numeric data in databases. It presents a realistic solution to the problem where numeric data are transformed into alphanumeric types and hence there is minimal probability of storing encrypted data in the existing numeric field. The proposed algorithm allows translucent verification intensity encryption that does not modify the data field category or the fixed time span.

Keywords

Encryption Decryption Database Security Authentication 

References

  1. 1.
    Maurer, U.: The role of cryptography in database security. In: ACM SIGMOD (2004)Google Scholar
  2. 2.
    Agrawal, R., Kiernan, J., Srikanth, R., Xu, Y.: Order preserving encryption for numeric data. IBM Almandan Research CenterGoogle Scholar
  3. 3.
    Harold Robinson, Y., Rajaram, M.: Trustworthy link failure recovery algorithm for highly dynamic mobile adhoc networks. World Acad. Sci. Eng. Technol. Int. J. Electr. Comput. Energ. Electron. Commun. Eng. 9(2), 233–236 (2015)Google Scholar
  4. 4.
    Arshad, N.H.: The design and implementation of database encryption (2007)Google Scholar
  5. 5.
    Yang, Z., Sesay, S., Chen, J., Xu, D.: A secure database encryption scheme (2004)Google Scholar
  6. 6.
    Robinson, Y.H., Rajaram, M.: A memory aided broadcast mechanism with fuzzy classification on a device-to-device mobile Ad Hoc network. Wirel. Pers. Commun. 1–23 (2016).  https://doi.org/10.1007/s11277-016-3213-0
  7. 7.
    Perkins, C.E., Royer, E.M.: Ad-Hoc On-Demand distance vector routing. In: Proceedings WMCSA’99 Second IEEE Workshop Mobile Computing Systems and Applications, pp. 90–100 (1999)Google Scholar
  8. 8.
    Setton, E., Yoo, T., Zhu, X., Goldsmith, A., Girod, B.: Crosslayer design of ad hoc networks for real-time video streaming. IEEE Wirel. Comm. 12(4), 59–65 (2005)CrossRefGoogle Scholar
  9. 9.
    Robinson, Y.H., Rajaram, M.: Energy-aware multipath routing scheme based on particle swarm optimization in mobile ad hoc networks. Sci. World J. 1–9 (2015).  https://doi.org/10.1155/2015/284276
  10. 10.
    Stallings, W.: Cryptography and network security: principles and practice, 2nd ednGoogle Scholar
  11. 11.
    Lin, C.R., Gerla, M.: Asynchronous multimedia multihop wireless networks. Proc. IEEE Infocom 1, 118–125 (1997)CrossRefGoogle Scholar
  12. 12.
    Biswas, S., Morris, R.: Opportunistic routing in multi-hop wireless networks. ACM SIGCOMM Comput. Commun. Rev. 34(1), 69–74 (2004)CrossRefGoogle Scholar
  13. 13.
    Rozner, E., Seshadri, J., Mehta, Y., Qiu, L.: Soar: simple opportunistic adaptive routing protocol for wireless mesh networks. MobileComput. IEEE Trans. on 8(12), 1622–1635 (2009)Google Scholar
  14. 14.
    Kaur, K., Dhindsa, K.S., Singh, G.: Numeric to numeric encryption of databases: using 3Kdec algorithm. In: IEEE International Conference IACC 2009, pp. 1501–1505 (2009)Google Scholar
  15. 15.
    Harold Robinson, Y., Rajaram, M.: Establishing pairwise keys using key predistribution schemes for sensor networks. World Acad. Sci. Eng. Technol. Int. J. Comput. Electr. Autom. Control Info. Eng. 9(2), 608–612 (2015)Google Scholar
  16. 16.
    Balaji, S., Robinson, Y.H., Rajaram, M.: SCSBE: secured cluster and sleep based energy-efficient sensory data collection with mobile sinks. Circ. Syst. 7, 1992–2001 (2016).  https://doi.org/10.4236/cs.2016.78173CrossRefGoogle Scholar
  17. 17.
    Chang, C., Chan, C.W.: A database record encryption scheme using RSA public key cryptosystem and its master keys. In: The International Conference on Computer networks and Mobile Computing (ICCNMC), pp. 312–315 (2013)Google Scholar
  18. 18.
    Robinson, Y.H., Balaji, S., Rajaram, M.: ECBK: enhanced cluster based key management scheme for achieving quality of service. Circ. Syst. 7, 2014–2024 (2016).  https://doi.org/10.4236/cs.2016.78175CrossRefGoogle Scholar
  19. 19.
    Li, Y., Chen, W., Zhang, Z.L.: Optimal forwarder list selection in opportunistic routing. In: 2009 IEEE 6th International Conference on Mobile Adhoc and Sensor Systems MASS’09, pp. 670–675. IEEE (2009)Google Scholar
  20. 20.
    Füßler, H., Widmer, J., Käsemann, M., Mauve, M., Hartenstein, H.: Contention-based forwarding for mobile ad hoc networks. Ad Hoc Netw. 1(4), 351–369 (2003)CrossRefGoogle Scholar
  21. 21.
    Yang, S., Zhong, F., Yeo, C.K., Lee, B.S., Boleng, J.: Position based opportunistic routing for robust data delivery in MANETs. In: GLOBECOM 2009-2009 IEEE Global Telecommunications Conference, pp 1–6. IEEE (2009)Google Scholar
  22. 22.
    Harold Robinson, Y., Rajaram, M., Golden Julie, E., Balaji, S.: Dominating set algorithm and trust evaluation scheme for secured cluster formation and data transferring. World Acad. Sci. Eng. Technol. Int. J. Comput. Electr. Autom. Control Info. Eng. 10, 388–393 (2016)Google Scholar
  23. 23.
    Darehshoorzadeh, A., Cerda-Alabern, L. Distance progress based opportunistic routing for wireless mesh networks. In: 2012 8th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 179–184. IEEE (2012)Google Scholar
  24. 24.
    Gupta, S., Dhurandher, S.K., Woungang, I., Kumar, A., Obaidat, M.S.: Trust-based security protocol against blackhole attacks in opportunistic networks. In: 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 724–729. IEEE (2013)Google Scholar
  25. 25.
    Harold Robinson, Y., Rajaram, M., Golden Julie, E., Balaji, S.: Tree based data fusion clustering routing algorithm for illimitable network administration in wireless sensor network. World Acad. Sci. Eng. Technol. Int. J. Comput. Electr. Autom. Control Inf. Eng. 10(6), 1123–1130 (2016)Google Scholar
  26. 26.
    Mahmoud, M.M., Lin, X., Shen, X., et al.: Secure and reliable routing protocols for heterogeneous multihop wireless networks. IEEE Trans. Parallel Distrib. Syst. 26(4), 1140–1153 (2015)CrossRefGoogle Scholar
  27. 27.
    Robinson, Y.H., Rajaram, M., Julie, E.G., Balaji, S.: TBOR: tree based opportunistic routing for mobile Ad Hoc networks. world Acad. Sci. Eng. Technol. Int. J. Comput. Electr. Autom. Control Inf. Eng. 10(6), 1115–1122 (2016)Google Scholar
  28. 28.
    Cho, J.-H., Swami, A., Chen, R.: A survey on trust management for mobile ad hoc networks. Commun. Surv. Tutorials IEEE 13(4), 562–583 (2011)CrossRefGoogle Scholar
  29. 29.
    Yu, H., Shen, Z., Miao, C., Leung, C., Niyato, D.: A survey of trust and reputation management systems in wireless communications. Proc. IEEE 98(10), 1755–1772 (2010)CrossRefGoogle Scholar
  30. 30.
    Michiardi, P., Molva, R.: Core: a collaborative reputation mechanism to enforce node cooperation in mobile ad hoc networks. In: Advanced Communications and Multimedia Security, pp. 107–121. Springer (2002)Google Scholar
  31. 31.
    Ramalakshmi, S., Robinson, Y.H.: ATMPH: Attaining optimal throughput capacity of MANET with power control in heterogeneous network. Program. Device Circ. Syst. 6(4), 111–115 (2014)Google Scholar
  32. 32.
    Ayyasamy, A., Venkatachalapathy, K.: Context aware adaptive service based dynamic channel allocation approach for providing an optimal QoS over MANET. Int. J. Eng. Technol. (IJET). 6(3), 1465–1479 (2014). ISSN: 0975-4024Google Scholar
  33. 33.
    Harold Robinson, Y., Rajaram, M.: A novel approach to allocate channels dynamically in wireless mesh networks. World Acad. Sci. Eng. Technol. Int. J. Comput. Electr. Autom. Control Inf. Eng. 8(10), 1865–1868 (2014)Google Scholar
  34. 34.
    Han, G., Jiang, J., Shu, L., Niu, J., Chao, H.-C.: Management and applications of trust in wireless sensor networks: a survey. J. Comput. Syst. Sci. 80(3), 602–617 (2014)CrossRefGoogle Scholar
  35. 35.
    Robinson, Y.H., Rajeswari, S.R.: Energy-based dynamic encryption for wireless sensor networks. Wirel. Commun. 3(9), 661–663 (2011)Google Scholar
  36. 36.
    Buchegger, S., Le Boudec, J.Y.: Performance analysis of the confidant protocol. In: Proceedings of the 3rd ACM international symposium on Mobile ad hoc networking & computing, pp. 226–236. ACM (2002)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringSCAD College of Engineering and TechnologyCheranmadeviIndia
  2. 2.Department of Computer Science and EngineeringAnna University Regional CampusTirunelveliIndia

Personalised recommendations