Skip to main content

Proactive Preventive and Evidence-Based Artificial Intelligene Models: Future Healthcare

  • Conference paper
  • First Online:
International Conference on Intelligent Computing and Smart Communication 2019

Abstract

Health care is one of the most important agenda in every nation’s economic and social growth. Due to amalgamation in food habits and lifestyle, today’s health care is under tremendous burden because of an increase in chronic diseases. An era of health care is under development due to the fast and accurate diagnosis ability of artificial intelligence from the last 2 years. Due to AI, it is possible in the future to provide cost-effective models in health care at the reach of every patient. The basic motivation behind this paper is to insight some of the AI models of the health care, their future scope, and implementation problems. This study will surely help to identify the thought process behind each model and generate some new guidelines for implementation in the future. These models require certain modifications in terms of data handling, security, image enhancement, and reconstruction. Use of smartphone and wearable devices has increased rapidly, and hence we need to provide a unique solution to society in terms of the new techniques of artificial intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. B.J. Lee, J.Y. Kim, Identification of type 2 diabetes risk factors using phenotypes consisting of anthropometry and triglycerides based on machine learning. IEEE J. Biomed. Health Inform. 20(1) (2016)

    Google Scholar 

  2. J. Thevenot, M.B. Lopez, A. Hadid, A survey on computer vision for assistive medical diagnosis from faces. IEEE J. Biomed. Health Inform. 22(5), 1497–1511 (2018). https://doi.org/10.1109/JBHI.2017.2754861

    Article  Google Scholar 

  3. S. Ram, W. Zhang, M. Williams, Y. Pengetnze, Predicting asthma-related emergency department visits using Big Data. IEEE J. Biomed. Health Inform. 19(4), 1216–1223 (2015). https://doi.org/10.1109/JBHI.2015.2404829

    Article  Google Scholar 

  4. J.H. Brenas, M.S. Al-Manir, C.J.O. Baker, A. Shaban-Nejad, A malaria analytics framework to support evolution and interoperability of global health surveillance systems. IEEE Access 5, 21605–21619 (2017)

    Article  Google Scholar 

  5. O. Lahdenoja, T. Hurnanen, Z. Iftikhar, S. Nieminen, T. Knuutila, A. Saraste, T. Koivisto et al., Atrial fibrillation detection via accelerometer and gyroscope of a smartphone. IEEE J. Biomed. Health Inform. 22(1), 108–118 (2018). https://doi.org/10.1109/JBHI.2017.2688473

  6. W.D. Kearns, J.L. Fozard, V.O. Nams, Movement path tortuosity in free ambulation: relationships to age and brain disease. IEEE J. Biomed. Health Inform. 21(2), 539–548 (2017). https://doi.org/10.1109/JBHI.2016.2517332

    Article  Google Scholar 

  7. K. Seol, Y.G. Kim, E. Lee, Y.D. Seo, D.K. Baik, Privacy-preserving attribute-based access control model for the XML-based electronic health record system. IEEE Access 6, 9114–9128 (2018). https://doi.org/10.1109/ACCESS.2018.2800288

    Article  Google Scholar 

  8. L. Yu, W.M. Chan, Y. Zhao, K.L. Tsui, The personalized health monitoring system of elderly wellness at the community level in Hong Kong. IEEE Access 6, 35558–35567 (2018). https://doi.org/10.1109/ACCESS.2018.2848936

    Article  Google Scholar 

  9. R. Sanchez-Guerrero, F.A. Mendoza, D. Diaz-Sanchez, P.A. Cabarcos, A.M. Lopez, Collaborative eHealth meets security: privacy-enhancing patient profile management. IEEE J. Biomed. Health Inform. 21(6), 1741–1749 (2017). https://doi.org/10.1109/JBHI.2017.2655419

    Article  Google Scholar 

  10. M.M. Anthimopoulos, L. Gianola, L. Scarnato, P. Diem, S.G. Mougiakakou, A food recognition system for diabetic patients based on an optimized bag-of-features model. IEEE J. Biomed. Health Inform. 18(4), 1261–1271 (2014). https://doi.org/10.1109/JBHI.2014.2308928

    Article  Google Scholar 

  11. A.A. Rizvi, Nutritional challenges in the elderly with diabetes. Int. J. Diabetes Mellit. (2009). https://doi.org/10.1016/j.ijdm.2009.05.002

  12. H.C. Wang, A.R. Lee, Recent developments in blood glucose sensors. J. Food Drug Anal. (2015). Elsevier Taiwan LLC. https://doi.org/10.1016/j.jfda.2014.12.001

  13. D. Ravi, C. Wong, B. Lo, G.Z. Yang, A deep learning approach to on-node sensor data analytics for mobile or wearable devices. IEEE J. Biomed. Health Inform. 21(1), 56–64 (2017). https://doi.org/10.1109/JBHI.2016.2633287

    Article  Google Scholar 

  14. D. Stern, C. Payer, N. Giuliani, M. Urschler, Automatic age estimation and majority age classification from multi-factorial MRI data. IEEE J. Biomed. HealthInformatics (2018). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/JBHI.2018.2869606

  15. E. Shelhamer, J. Long, T. Darrell, Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017). https://doi.org/10.1109/TPAMI.2016.2572683

  16. W.Y. Lin, W.C. Chou, P.C. Chang, C.C. Chou, M.S. Wen, M.Y. Ho, M.Y. Lee et al., Identification of location specific feature points in a cardiac cycle using a novel seismocardiogram spectrum system. IEEE J. Biomed. Health Inform. 22(2), 442–449 (2018)

    Google Scholar 

  17. H.N. Bharath, D.M. Sima, N. Sauwen, U. Himmelreich, L. De Lathauwer, S. Van Huffel, Nonnegative canonical polyadic decomposition for tissue-type differentiation in gliomas. IEEE J. Biomed. Health Inform. 21(4), 1124–1132 (2017). https://doi.org/10.1109/JBHI.2016.2583539

    Article  Google Scholar 

  18. S.G. Kandlikar, I. Perez-Raya, P.A. Raghupathi, J.L. Gonzalez-Hernandez, D. Dabydeen, L. Medeiros, P. Phatak, Infrared imaging technology for breast cancer detection—current status, protocols, and new directions. Int. J. Heat Mass Transf. (2017). Elsevier Ltd. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.086

  19. R. Miotto, F. Wang, S. Wang, X. Jiang, J.T. Dudley, Deep learning for healthcare: review, opportunities, and challenges. Brief. Bioinform. (2017). https://doi.org/10.1093/bib/bbx044

    Article  Google Scholar 

  20. M. Pavel, H.B. Jimison, H.D. Wactlar, T.L. Hayes, W. Barkis, J. Skapik, J. Kaye, The role of technology and engineering models in transforming healthcare. IEEE Rev. Biomed. Eng. 6, 156–177 (2013). https://doi.org/10.1109/RBME.2012.2222636

    Article  Google Scholar 

  21. F. Pesapane, M. Codari, F. Sardanelli, Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur. Radiol. Exp. 2(1), 35 (2018). https://doi.org/10.1186/s41747-018-0061-6

    Article  Google Scholar 

  22. C. Liew, The future of radiology augmented with artificial intelligence: a strategy for success. Eur. J. Radiol. (2018). Elsevier Ireland Ltd. https://doi.org/10.1016/j.ejrad.2018.03.019

  23. M. De La Puente-Yagüe, M.A. Cuadrado-Cenzual, M.J. Ciudad-Cabañas, M. Hernández-Cabria, L. Collado-Yurrita, Vitamin D: and its role in breast cancer. Kaohsiung J. Med. Sci. (2018). Elsevier (Singapore) Pte Ltd. https://doi.org/10.1016/j.kjms.2018.03.004

  24. F. Pan, P. He, C. Liu, T. Li, A. Murray, D. Zheng, Variation of the Korotkoff stethoscope sounds during blood pressure measurement: Analysis using a convolutional neural network. IEEE J. Biomed. Health Inform. 21(6), 1593–1598 (2017). https://doi.org/10.1109/JBHI.2017.2703115

    Article  Google Scholar 

  25. M.H. Yap, G. Pons, J. Martí, S. Ganau, M. Sentís, R. Zwiggelaar, R. Martí et al., Automated Breast ultrasound lesions detection using convolutional neural networks. IEEE J. Biomed. Health Inform. 22(4), 1218–1226 (2018). https://doi.org/10.1109/JBHI.2017.2731873

  26. O. Oktay, W. Bai, R. Guerrero, M. Rajchl, A. De Marvao, D.P. O’Regan, D. Rueckert et al., Stratified decision forests for accurate anatomical landmark localization in cardiac images. IEEE Trans. Med. Imaging 36(1), 332–342 (2017). https://doi.org/10.1109/TMI.2016.2597270

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivaji D. Pawar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, K.K., Pawar, S.D., Bali, B. (2020). Proactive Preventive and Evidence-Based Artificial Intelligene Models: Future Healthcare. In: Singh Tomar, G., Chaudhari, N.S., Barbosa, J.L.V., Aghwariya, M.K. (eds) International Conference on Intelligent Computing and Smart Communication 2019. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-0633-8_44

Download citation

Publish with us

Policies and ethics