Skip to main content

In Vitro Starch Digestion: Mechanisms and Kinetic Models

  • Chapter
  • First Online:
Starch Structure, Functionality and Application in Foods

Abstract

This chapter briefly introduces the concept of “physiologically resistant starch” and “enzyme-resistant starch” and their health benefits. The emphasis of this chapter is two fundamental mechanisms which determine starch digestibility in food, including (1) physical barriers that slow down digestive enzyme access/binding to starch and (2) starch structural features that limit the enzyme action once bound to starch. Commonly used in vitro kinetic models and the starch digestive enzymes (i.e., pancreatic α-amylase and amyloglucosidase) are also discussed at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Svihus B, Hervik AK. Digestion and metabolic fates of starch, and its relation to major nutrition-related health problems: a review. Starch-Starke. 2016;68(3–4):302–13.

    CAS  Google Scholar 

  2. Wang SJ, Li CL, Copeland L, Niu Q, Wang S. Starch retrogradation: a comprehensive review. Compr Rev Food Sci Food Saf. 2015;14(5):568–85.

    CAS  Google Scholar 

  3. Englyst HN, Cummings JH. Digestion of the polysaccharides of some cereal foods in the human small-intestine. Am J Clin Nutr. 1985;42(5):778–87.

    CAS  PubMed  Google Scholar 

  4. Li H, Gidley MJ, Dhital S. High-amylose starches to bridge the “fiber gap”: development, structure, and nutritional functionality. Compr Rev Food Sci Food Saf. 2019;18:362–79.

    CAS  Google Scholar 

  5. Van Munster IP, Tangerman A, Nagengast FM. Effect of resistant starch on colonic fermentation, bile-acid metabolism, and mucosal proliferation. Dig Dis Sci. 1994;39(4):834–42.

    PubMed  Google Scholar 

  6. Topping DL, Bajka BH, Bird AR, Clarke JM, Cobiac L, Conlon MA, Morell MK, Toden S. Resistant starches as a vehicle for delivering health benefits to the human large bowel. Microb Ecol Health Dis. 2008;20(2):103–8.

    CAS  Google Scholar 

  7. Hasjim J, Lavau GC, Gidley MJ, Gilbert RG. In vivo and in vitro starch digestion: are current in vitro techniques adequate? Biomacromolecules. 2010;11(12):3600–8.

    CAS  PubMed  Google Scholar 

  8. Tovar J, Bjorck IM, Asp NG. Incomplete digestion of legume starches in rats: a study of precooked flours containing retrograded and physically inaccessible starch fractions. J Nutr. 1992;122(7):1500–7.

    CAS  PubMed  Google Scholar 

  9. Faisant N, Champ M, Colonna P, Buleon A. Structural discrepancies in resistant starch obtained in-vivo in humans and in-vitro. Carbohydr Polym. 1993;21(2–3):205–9.

    CAS  Google Scholar 

  10. Dona AC, Pages G, Gilbert RG, Kuchel PW. Digestion of starch: in vivo and in vitro kinetic models used to characterise oligosaccharide or glucose release. Carbohydr Polym. 2010;80(3):599–617.

    CAS  Google Scholar 

  11. Englyst HN, Kingman SM, Cummings JH. Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr. 1992;46:S33–50.

    PubMed  Google Scholar 

  12. Ai YF, Hasjim J, Jane JL. Effects of lipids on enzymatic hydrolysis and physical properties of starch. Carbohydr Polym. 2013;92(1):120–7.

    CAS  PubMed  Google Scholar 

  13. Zhang B, Huang Q, Luo FX, Fu X. Structural characterizations and digestibility of debranched high-amylose maize starch complexed with lauric acid. Food Hydrocoll. 2012;28(1):174–81.

    Google Scholar 

  14. Hasjim J, Lee SO, Hendrich S, Setiawan S, Ai Y, Jane JL. Characterization of a novel resistant-starch and its effects on postprandial plasma-glucose and insulin responses. Cereal Chem. 2010;87(4):257–62.

    CAS  Google Scholar 

  15. Zhang B, Dhital S, Gidley MJ. Densely packed matrices as rate determining features in starch hydrolysis. Trends Food Sci Technol. 2015;43(1):18–31.

    Google Scholar 

  16. Zhang B, Wang K, Hasjim J, Li EP, Flanagan BM, Gidley MJ, Dhital S. Freeze-drying changes the structure and digestibility of B-polymorphic starches. J Agric Food Chem. 2014;62(7):1482–91.

    CAS  PubMed  Google Scholar 

  17. Butterworth PJ, Warren FJ, Grassby T, Patel H, Ellis PR. Analysis of starch amylolysis using plots for first-order kinetics. Carbohydr Polym. 2012;87(3):2189–97.

    CAS  Google Scholar 

  18. Dhital S, Warren FJ, Butterworth PJ, Ellis PR, Gidley MJ. Mechanisms of starch digestion by alpha-amylase: structural basis for kinetic properties. Crit Rev Food Sci Nutr. 2017;57:875–92.

    CAS  PubMed  Google Scholar 

  19. Li H, Gidley MJ, Dhital S. Wall porosity in isolated cells from food plants: implications for nutritional functionality. Food Chem. 2019;279:416–25.

    CAS  PubMed  Google Scholar 

  20. Dhital S, Bhattarai RR, Gorham J, Gidle MJ. Intactness of cell wall structure controls the in vitro digestion of starch in legumes. Food Funct. 2016;7:1367–79.

    CAS  PubMed  Google Scholar 

  21. Fardet A, Hoebler C, Baldwin PM, Bouchet B, Gallant DJ, Barry JL. Involvement of the protein network in the in vitro degradation of starch from spaghetti and lasagne: a microscopic and enzymic study. J Cereal Sci. 1998;27(2):133–45.

    Google Scholar 

  22. Warren FJ, Royall PG, Gaisford S, Butterworth PJ, Ellis PR. Binding interactions of alpha-amylase with starch granules: the influence of supramolecular structure and surface area. Carbohydr Polym. 2011;86(2):1038–47.

    CAS  Google Scholar 

  23. Blazek J, Gilbert EP. Effect of enzymatic hydrolysis on native starch granule structure. Biomacromolecules. 2010;11(12):3275–89.

    CAS  PubMed  Google Scholar 

  24. Dhital S, Shrestha AK, Gidley MJ. Effect of cryo-milling on starches: functionality and digestibility. Food Hydrocoll. 2010;24(2–3):152–63.

    CAS  Google Scholar 

  25. Blazek J, Copeland L. Amylolysis of wheat starches. I. Digestion kinetics of starches with varying functional properties. J Cereal Sci. 2010;51(3):265–70.

    CAS  Google Scholar 

  26. Tahir R, Ellis PR, Butterworth PJ. The relation of physical properties of native starch granules to the kinetics of amylolysis catalysed by porcine pancreatic alpha-amylase. Carbohydr Polym. 2010;81(1):57–62.

    CAS  Google Scholar 

  27. Lopez-Rubio A, Htoon A, Gilbert EP. Influence of extrusion and digestion on the nanostructure of high-amylose maize starch. Biomacromolecules. 2007;8(5):1564–72.

    CAS  PubMed  Google Scholar 

  28. Htoon A, Shrestha AK, Flanagan BM, et al. Effects of processing high amylose maize starches under controlled conditions on structural organisation and amylase digestibility. Carbohydr Polym. 2009;75(2):236–45.

    CAS  Google Scholar 

  29. Zhang B, Dhital S, Flanagan BM, Luckman P, Halley PJ, Gidley MJ. Extrusion induced low-order starch matrices: enzymic hydrolysis and structure. Carbohydr Polym. 2015;134:485–96.

    CAS  PubMed  Google Scholar 

  30. Han JA, BeMiller JN. Preparation and physical characteristics of slowly digesting modified food starches. Carbohydr Polym. 2007;67(3):366–74.

    CAS  Google Scholar 

  31. Robyt JF, French D. Multiple attack hypothesis of alpha-amylase action: action of porcine pancreatic human salivary and Aspergillus oryzae alpha-amylases. Arch Biochem Biophys. 1967;122(1):8–16.

    CAS  PubMed  Google Scholar 

  32. Nichols BL, Avery S, Sen P, et al. The maltase-glucoamylase gene: common ancestry to sucrase-isomaltase with complementary starch digestion activities. Proc Natl Acad Sci. 2003;100(3):1432–7.

    CAS  PubMed  Google Scholar 

  33. Hizukuri S. Starch: analytical aspects. In: Eliasson AC, editor. Carbohydrates in food. New York: CRC; 1996. p. 347–430.

    Google Scholar 

  34. Robyt JF. Enzymes in the hydrolysis and synthesis of starch. In: Whistler RL, Bemiller JN, Paschall EF, editors. Starch: chemistry and technology. 2nd ed. Cambridge: Academic; 1986. p. 87–123.

    Google Scholar 

  35. Robyt JF, French D. Action pattern of porcine pancreatic alpha-amylase in relationship to substrate binding site of enzyme. J Biol Chem. 1970;245(15):3917–27.

    CAS  PubMed  Google Scholar 

  36. Kandra L, Gyemant G. Examination of the active sites of human salivary alpha-amylase (HSA). Carbohydr Res. 2000;329(3):579–85.

    CAS  PubMed  Google Scholar 

  37. Abdullah M, French D, Robyt JF. Multiple attack by alpha-amylases. Arch Biochem Biophys. 1966;114(3):595–63.

    CAS  PubMed  Google Scholar 

  38. Takahashi T, Kato K, Ikegami Y, Irie M. Different behavior towards raw starch of 3 forms of glucoamylase from a Rhizopus Sp. J Biochem. 1985;98(3):663–71.

    CAS  PubMed  Google Scholar 

  39. Norouzian D, Akbarzadeh A, Scharer JM, Young MM. Fungal glucoamylases. Biotechnol Adv. 2006;24(1):80–5.

    CAS  PubMed  Google Scholar 

  40. Robyt JF. Enzymes and their action on starch. In: Bemiller JN, Whistler RL, editors. Starch chemistry and technology. 3rd ed. Cambridge: Academic; 2009. p. 237–92.

    Google Scholar 

  41. Goni I, Garcia-Alonso A, Saura-Calixto F. A starch hydrolysis procedure to estimate glycemic index. Nutr Res. 1997;17(3):427–37.

    CAS  Google Scholar 

  42. Poulsen BR, Ruiter G, Visser J, et al. Determination of first order rate constants by natural logarithm of the slope plot exemplified by analysis of Aspergillus niger in batch culture. Biotechnol Lett. 2003;25(7):565–71.

    CAS  PubMed  Google Scholar 

  43. Zhang B, Dhital S, Gidley MJ. Synergistic and antagonistic effects of α-amylase and amyloglucosidase on starch digestion. Biomacromolecules. 2013;12(6):1945–54.

    Google Scholar 

  44. Warren FJ, Zhang B, Waltzer G, Gidley MJ, Dhital S. The interplay of α-amylase and amyloglucosidase activities on the digestion of starch in in vitro enzymic systems. Carbohydr Polym. 2015;117:192–200.

    CAS  PubMed  Google Scholar 

  45. Warren FJ, Butterworth PJ, Ellis PR. Studies of the effect of maltose on the direct binding of porcine pancreatic alpha-amylase to maize starch. Carbohydr Res. 2012;358:67–71.

    CAS  PubMed  Google Scholar 

  46. Lopez-Rubio A, Flanagan BM, Shrestha AK, Gidley MJ, Gilbert EP. Molecular rearrangement of starch during in vitro digestion: toward a better understanding of enzyme resistant starch formation in processed starches. Biomacromolecules. 2008;9(7):1951–8.

    CAS  PubMed  Google Scholar 

  47. Zou W, Sissons M, Gidley MJ, Gilbert RG, Warren FJ. Combined techniques for characterising pasta structure reveals how the gluten network slows enzymic digestion rate. Food Chem. 2015;188:559–68.

    CAS  PubMed  Google Scholar 

  48. Cornish-Bowden A, Eisenthal R. Statistical considerations in the estimation of enzyme kinetic parameters by the direct linear plot and other methods. Biochem J. 1974;139(3):721–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Eisenthal R, Cornish-Bowden A. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J. 1974;139(3):715–20.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (31701546), the Natural Science Foundation of Guangdong Province (2017A030313207), and the 111 Project (B17018). Bin Zhang thanks the Hong Kong Scholar Program (XJ2019049), Pearl River Talent Recruitment Program of Guangdong Province (2017GC010229), and the Pearl River Nova Program of Guangzhou (201906010079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, B., Li, H., Wang, S., Junejo, S.A., Liu, X., Huang, Q. (2020). In Vitro Starch Digestion: Mechanisms and Kinetic Models. In: Wang, S. (eds) Starch Structure, Functionality and Application in Foods. Springer, Singapore. https://doi.org/10.1007/978-981-15-0622-2_9

Download citation

Publish with us

Policies and ethics