Skip to main content

Starch Modification and Application

  • Chapter
  • First Online:
Starch Structure, Functionality and Application in Foods

Abstract

Starch occurs widely in nature and is the second largest biomass on earth after cellulose and one of the most abundant bio-renewable materials. The properties of native starch do not always meet the requirements for a multitude of industrial applications. Functional limitations of native starch can be overcome by modifications to broaden its applications in papermaking, pharmaceuticals, medicine, food, and other industries. In this chapter, we describe in detail the main methods for the modification of starch used in recent years. These methods involve physical, chemical, and biological modifications. We also discuss applications of modified starch in industries and propose potential applications of modified starch materials for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burrell MM. Starch: the need for improved quality or quantity-an overview. J Exp Bot. 2003;54(382):451–4566.

    CAS  PubMed  Google Scholar 

  2. Balat M, Balat H, Öz C. Progress in bioethanol processing. Prog Energy Combust Sci. 2008;34(5):551–73.

    CAS  Google Scholar 

  3. Wang J, Ren F, Yu J, Copeland L, Wang S, Wang S. Toward a better understanding of different dissolution behavior of starches in aqueous ionic liquids at room temperature. ACS Omega. 2019;4(6):11312–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Singh J, Kaur L, McCarthy OJ. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications-a review. Food Hydrocoll. 2007;21(1):1–22.

    CAS  Google Scholar 

  5. Wang J, Ren F, Huang H, Wang Y, Copeland L, Wang S, et al. Effect of CaCl2 pre-treatment on the succinylation of potato starch. Food Chem. 2019;288:291–6.

    CAS  PubMed  Google Scholar 

  6. Abbas KA, Khalil SK, Anis Shobirin MH. Modified starches and their usages in selected food products: a review study. J Agric Sci. 2010;2(2):90–100.

    Google Scholar 

  7. Ashogbon AO, Akintayo ET. Recent trend in the physical and chemical modification of starches from different botanical sources: a review. Starch-Stärke. 2014;66(1–2):41–57.

    CAS  Google Scholar 

  8. Dura A, Blaszczak W, Rosell CM. Functionality of porous starch obtained by amylase or amyloglucosidase treatments. Carbohydr Polym. 2014;101(2):837–45.

    CAS  PubMed  Google Scholar 

  9. Anil G. Heat-moisture treatment of starch. In: Sui Z, Kong X, editors. Physical modifications of starch. Singapore: Springer; 2018. p. 15–36.

    Google Scholar 

  10. Jacobs H, Delcour JA. Hydrothermal modifications of granular starch, with retention of the granular structure: a review. J Agric Food Chem. 1998;46(8):2895–905.

    CAS  Google Scholar 

  11. Silva WM, Biduski B, Lima KO, Pinto VZ, Hoffmann JF, Vanier NL, et al. Starch digestibility and molecular weight distribution of proteins in rice grains subjected to heat-moisture treatment. Food Chem. 2017;219(15):260–7.

    CAS  PubMed  Google Scholar 

  12. Arns B, Bartz J, Radunz M, Evangelho JAD, Pinto VZ, Zavareze EDR, et al. Impact of heat-moisture treatment on rice starch, applied directly in grain paddy rice or in isolated starch. LWT-Food Sci Technol. 2015;60(2):708–13.

    CAS  Google Scholar 

  13. Gunaratne A, Hoover R. Effect of heat–moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydr Polym. 2002;49(4):425–37.

    CAS  Google Scholar 

  14. Kawabata A, Takase N, Miyoshi E, Sawayama S, Kimura T, Kudo K. Microscopic observation and X-ray diffractometry of heat/moisture-treated starch granules. Starch-Stärke. 1994;46(12):463–9.

    CAS  Google Scholar 

  15. Huang TT, Zhou DN, Jin ZY, Xu XM, Chen HQ. Effect of repeated heat-moisture treatments on digestibility, physicochemical and structural properties of sweet potato starch. Food Hydrocoll. 2016;54:202–10.

    CAS  Google Scholar 

  16. Hormdok R, Noomhorm A. Hydrothermal treatments of rice starch for improvement of rice noodle quality. LWT-Food Sci Technol. 2007;40(10):1723–31.

    CAS  Google Scholar 

  17. Wang S, Wang S, Guo P, Liu L, Wang S. Multiscale structural changes of wheat and yam starches during cooking and their effect on in vitro enzymatic digestibility. J Agric Food Chem. 2017;65(1):156–66.

    CAS  PubMed  Google Scholar 

  18. Sun Q, Dai L, Nan C, Xiong L. Effect of heat moisture treatment on physicochemical and morphological properties of wheat starch and xylitol mixture. Food Chem. 2014;143:54–9.

    CAS  PubMed  Google Scholar 

  19. Jayakody L, Hoover R. Effect of annealing on the molecular structure and physicochemical properties of starches from different botanical origins-a review. Carbohydr Polym. 2008;74(3):691–703.

    CAS  Google Scholar 

  20. Tester RF, Debon SJ. Annealing of starch-a review. Int J Biol Macromol. 2000;27(1):1–12.

    CAS  PubMed  Google Scholar 

  21. Tester RF, Debon SJJ, Karkalas J. Annealing of wheat starch. J Cereal Sci. 1998;28(3):259–72.

    CAS  Google Scholar 

  22. Wang S, Wang J, Yu J, Wang S. A comparative study of annealing of waxy, normal and high-amylose maize starches: the role of amylose molecules. Food Chem. 2014;164(20):332–8.

    CAS  PubMed  Google Scholar 

  23. Jayakody L, Hoover R, Liu Q, Donner E. Studies on tuber starches III. Impact of annealing on the molecular structure, composition and physicochemical properties of yam (Dioscorea sp.) starches grown in Sri Lanka. Carbohydr Polym. 2009;76(1):145–53.

    CAS  Google Scholar 

  24. Adebowale KO, Afolabi TA, Oluowolabi BI. Hydrothermal treatments of finger millet (Eleusine coracana) starch. Food Hydrocoll. 2005;19(6):974–83.

    CAS  Google Scholar 

  25. Wang S, Wang J, Wang S, Wang S. Annealing improves paste viscosity and stability of starch. Food Hydrocoll. 2017;62:203–11.

    CAS  Google Scholar 

  26. Xu M, Saleh ASM, Gong B, Li B, Jing L, Gou M, et al. The effect of repeated versus continuous annealing on structural, physicochemical, and digestive properties of potato starch. Food Res Int. 2018;111:324–33.

    CAS  PubMed  Google Scholar 

  27. Waduge RN, Hoover R, Vasanthan T, Gao J, Li J. Effect of annealing on the structure and physicochemical properties of barley starches of varying amylose content. Food Res Int. 2006;39(1):59–77.

    CAS  Google Scholar 

  28. Genkina NK, Wasserman LA, Noda T, Tester RF, Yuryev VP. Effects of annealing on the polymorphic structure of starches from sweet potatoes (Ayamurasaki and Sunnyred cultivars) grown at various soil temperatures. Carbohydr Res. 2004;339(6):1093–8.

    CAS  PubMed  Google Scholar 

  29. Gomes AMM, Silva CEMD, Ricardo NMPS, Sasaki JM, Germani R. Impact of annealing on the physicochemical properties of unfermented cassava starch (“Polvilho Doce”). Starch-Stärke. 2004;56(9):419–23.

    CAS  Google Scholar 

  30. Douzals J, Marechal P, Coquille J, Gervais P. Microscopic study of starch gelatinization under high hydrostatic pressure. J Agric Food Chem. 1996;44(6):1403–8.

    CAS  Google Scholar 

  31. Katopo H, Song Y, Jane JL. Effect and mechanism of ultrahigh hydrostatic pressure on the structure and properties of starches. Carbohydr Polym. 2002;47(3):233–44.

    CAS  Google Scholar 

  32. Stute R, Heilbronn, Klingler RW, Boguslawski S, Eshtiaghi MN, Knorr D. Effects of high pressures treatment on starches. Starch-Stärke. 1996;48(11–12):399–408.

    CAS  Google Scholar 

  33. Stolt M, Oinonen S, Autio K. Effect of high pressure on the physical properties of barley starch. Innovative Food Sci Emerg Technol. 2000;1(3):167–75.

    CAS  Google Scholar 

  34. Wang J, Zhu H, Li S, Wang S, Wang S, Copeland L. Insights into structure and function of high pressure-modified starches with different crystalline polymorphs. Int J Biol Macromol. 2017;102:414–24.

    CAS  PubMed  Google Scholar 

  35. Guo Z, Zeng S, Lu X, Zhou M, Zheng M, Zheng B. Structural and physicochemical properties of lotus seed starch treated with ultra-high pressure. Food Chem. 2015;186(1):223–30.

    CAS  PubMed  Google Scholar 

  36. Li W, Zhang F, Liu P, Bai Y, Gao L, Shen Q. Effect of high hydrostatic pressure on physicochemical, thermal and morphological properties of mung bean (Vigna radiata L.) starch. J Food Eng. 2011;103(4):388–93.

    CAS  Google Scholar 

  37. Hibi Y, Matsumoto T, Hagiwara S. Effect of high pressure on the crystalline structure of various starch granules. Cereal Chem. 1993;70(6):671–6.

    CAS  Google Scholar 

  38. Palav T, Seetharaman K. Mechanism of starch gelatinization and polymer leaching during microwave heating. Carbohydr Polym. 2006;65(3):364–70.

    CAS  Google Scholar 

  39. Anderson AK, Guraya HS. Effects of microwave heat-moisture treatment on properties of waxy and non-waxy rice starches. Food Chem. 2006;97(2):318–23.

    CAS  Google Scholar 

  40. Lewandowicz G, Jankowski T, Fornal J. Effect of microwave radiation on physico-chemical properties and structure of cereal starches. Carbohydr Polym. 2000;42(2):193–9.

    CAS  Google Scholar 

  41. Luo Z, He X, Fu X, Luo F, Gao Q. Effect of microwave radiation on the physicochemical properties of normal maize, waxy maize and amylomaize V starches. Starch-Stärke. 2006;58(9):468–74.

    CAS  Google Scholar 

  42. Lewandowicz G, Fornal J, Walkowski A. Effect of microwave radiation on physico-chemical properties and structure of potato and tapioca starches. Carbohydr Polym. 1997;34(4):213–20.

    CAS  Google Scholar 

  43. Chung HJ, Liu Q. Molecular structure and physicochemical properties of potato and bean starches as affected by gamma-irradiation. Int J Biol Macromol. 2010;47(2):214–22.

    CAS  PubMed  Google Scholar 

  44. Lee JS, Ee ML, Chung KH, Othman Z. Formation of resistant corn starches induced by gamma-irradiation. Carbohydr Polym. 2013;97(2):614–7.

    CAS  PubMed  Google Scholar 

  45. Chung HJ, Liu Q. Effect of gamma irradiation on molecular structure and physicochemical properties of corn starch. J Food Sci. 2010;74(5):353–61.

    Google Scholar 

  46. Kong X, Zhou X, Sui Z, Bao J. Effects of gamma irradiation on physicochemical properties of native and acetylated wheat starches. Int J Biol Macromol. 2016;91:1141–50.

    CAS  PubMed  Google Scholar 

  47. Bashir K, Aggarwal M. Physicochemical, thermal and functional properties of gamma irradiated chickpea starch. Int J Biol Macromol. 2017;97:426–33.

    CAS  PubMed  Google Scholar 

  48. Polesi LF, Junior MDDM, Sarmento SBS, Canniatti-Brazaca SG. Starch digestibility and physicochemical and cooking properties of irradiated rice grains. Rice Sci. 2017;24(1):48–55.

    Google Scholar 

  49. Gul K, Singh AK, Sonkawade RG. Physicochemical, thermal and pasting characteristics of gamma irradiated rice starches. Int J Biol Macromol. 2016;85:460–6.

    CAS  PubMed  Google Scholar 

  50. Byungryol B, Yu JY, Hyunseong Y, Juwoon L, Myungwoo B, Baik BK, et al. Physicochemical properties of waxy and normal maize starches irradiated at various pH and salt concentrations. Starch-Stärke. 2010;62(1):41–8.

    Google Scholar 

  51. Sujka M, Jamroz J. Ultrasound-treated starch: SEM and TEM imaging, and functional behaviour. Food Hydrocoll. 2013;31(2):413–9.

    CAS  Google Scholar 

  52. Sujka M. Ultrasonic modification of starch-impact on granules porosity. Ultrason Sonochem. 2017;37:424–9.

    CAS  PubMed  Google Scholar 

  53. Zhu J, Li L, Chen L, Li X. Study on supramolecular structural changes of ultrasonic treated potato starch granules. Food Hydrocoll. 2012;29(1):116–22.

    CAS  Google Scholar 

  54. Tran TTB, Shelat KJ, Tang D. Milling of rice grains. The degradation on three structural levels of starch in rice flour can be independently controlled during grinding. J Agric Food Chem. 2011;59(8):3964–73.

    CAS  PubMed  Google Scholar 

  55. Li E, Dhital S, Hasjim J. Effects of grain milling on starch structures and flour/starch properties. Starch-Stärke. 2014;66(1–2):15–27.

    CAS  Google Scholar 

  56. Thymi S, Krokida MK, Pappa A, Maroulis ZB. Structural properties of extruded corn starch. J Food Eng. 2005;68(4):519–26.

    Google Scholar 

  57. Gomez MH, Aguilera JM. A physicochemical model for extrusion of corn starch. J Food Sci. 1984;49(1):40–3.

    Google Scholar 

  58. Valous NA, Gavrielidou MA, Karapantsios TD, Kostoglou M. Performance of a double drum dryer for producing pregelatinized maize starches. J Food Eng. 2002;51(3):171–83.

    Google Scholar 

  59. Kumar L, Brennan M, Zheng H, Brennan C. The effects of dairy ingredients on the pasting, textural, rheological, freeze-thaw properties and swelling behaviour of oat starch. Food Chem. 2018;245:518–24.

    CAS  PubMed  Google Scholar 

  60. Thirumdas R, Trimukhe A, Deshmukh RR, Annapure US. Functional and rheological properties of cold plasma treated rice starch. Carbohydr Polym. 2017;157:1723–31.

    CAS  PubMed  Google Scholar 

  61. Han Z, Zeng XA, Yu SJ, Zhang BS, Chen XD. Effects of pulsed electric fields (PEF) treatment on physicochemical properties of potato starch. Innov Food Sci Emerg Technol. 2009;10(4):481–5.

    CAS  Google Scholar 

  62. Huber KC, Bemiller JN. Location of sites of reaction within starch granules. Cereal Chem. 2001;78(2):173–80.

    CAS  Google Scholar 

  63. Seow CC, Thevamalar K. Internal plasticization of granular rice starch by hydroxypropylation: effects on phase transitions associated with gelatinization. Starch-Stärke. 2010;45(3):85–8.

    Google Scholar 

  64. Huang J, Schols HA, Jin Z, Sulmann E, Agj V. Characterization of differently sized granule fractions of yellow pea, cowpea and chickpea starches after modification with acetic anhydride and vinyl acetate. Carbohydr Polym. 2007;67(1):11–20.

    CAS  Google Scholar 

  65. Wang Y, Wang L. Characterization of acetylated waxy maize starches prepared under catalysis by different alkali and alkaline-earth hydroxides. Starch-Stärke. 2015;54(1):25–30.

    Google Scholar 

  66. Elomaa M, Asplund T, Soininen P, Laatikainen R, Peltonen S, Hyvarinen S, et al. Determination of the degree of substitution of acetylated starch by hydrolysis, 1H NMR and TGA/IR. Carbohydr Polym. 2004;57(3):261–7.

    CAS  Google Scholar 

  67. Thirathumthavorn D, Charoenrein S. Thermal and pasting properties of acid-treated rice starches. Starch-Stärke. 2005;57(5):217–22.

    CAS  Google Scholar 

  68. Pu H, Chen L, Li X. An oral xolon-targeting controlled release system based on resistant starch acetate: synthetization, characterization, and preparation of film-coating pellets. J Agric Food Chem. 2011;59(10):5738–45.

    CAS  PubMed  Google Scholar 

  69. Chen ZG, Schols HA, Agj V. Differently sized granules from acetylated potato and sweet potato starches differ in the acetyl substitution pattern of their amylose populations. Carbohydr Polym. 2004;56(2):219–26.

    CAS  Google Scholar 

  70. Lawal OS. Succinyl and acetyl starch derivatives of a hybrid maize: physicochemical characteristics and retrogradation properties monitored by differential scanning calorimetry. Carbohydr Res. 2004;339(16):2673–82.

    CAS  PubMed  Google Scholar 

  71. Singh J, Kaur L, Singh N. Effect of acetylation on some properties of corn and potato starches. Starch-Stärke. 2004;6(12):586–601.

    Google Scholar 

  72. González Z, Pérez E. Effect of acetylation on aome properties of rice starch. Starch-Stärke. 2015;54(3–4):148–54.

    Google Scholar 

  73. Liu H, Ramsden L, Corke H. Physical properties of cross-linked and acetylated normal and waxy rice starch. Starch-Stärke. 1999;51(7):249–52.

    CAS  Google Scholar 

  74. Bhosale R, Singhal R. Effect of octenylsuccinylation on physicochemical and functional properties of waxy maize and amaranth starches. Carbohydr Polym. 2007;68(3):447–56.

    CAS  Google Scholar 

  75. Sweedman MC, Tizzotti MJ, Schäfer C, Gilbert RG. Structure and physicochemical properties of octenyl succinic anhydride modified starches: a review. Carbohydr Polym. 2013;92(1):905–20.

    CAS  PubMed  Google Scholar 

  76. Wang S, Li T, Wang S, Copeland L. Effects of hydrothermal-alkali and freezing-thawing pre-treatments on modification of corn starch with octenyl succinic anhydride. Carbohydr Polym. 2017;175:361–9.

    CAS  PubMed  Google Scholar 

  77. Shiftan D, Ravenelle F, Mateescu MA, Marchessault RH. Change in the V/B polymorph ratio and T1 relaxation of epichlorohydrin crosslinked high amylose starch excipient. Starch-Stärke. 2015;52(6–7):186–95.

    Google Scholar 

  78. Carmona-Garcia R, Sanchez-Rivera MM, Méndez-Montealvo G, Garza-Montoya B, Bello-Pérez LA. Effect of the cross-linked reagent type on some morphological, physicochemical and functional characteristics of banana starch (Musa paradisiaca). Carbohydr Polym. 2009;76(1):117–22.

    CAS  Google Scholar 

  79. Shi M, Gu F, Wu J, Yu S, Gao Q. Preparation, physicochemical properties, and in vitro digestibility of cross-linked resistant starch from pea starch. Starch-Stärke. 2013;65(11–12):947–53.

    CAS  Google Scholar 

  80. Ratnayake WS, Jackson DS. Phase transition of cross-linked and hydroxypropylated corn (Zea mays L.) starches. LWT-Food Sci Technol. 2008;41(2):346–58.

    CAS  Google Scholar 

  81. Majzoobi M, Radi M, Farahnaky A, Jamalian J, Tongdang T. Physico-chemical properties of phosphoryl chloride cross-linked wheat starch. Iran Polym J. 2009;18(6):491–9.

    CAS  Google Scholar 

  82. Santanderortega MJ, Stauner T, Loretz B, Ortegavinuesa JL, Bastosgonzález D, Wenz G, et al. Nanoparticles made from novel starch derivatives for transdermal drug delivery. J Control Release. 2010;141(1):85–92.

    CAS  Google Scholar 

  83. Kuakpetoon D, Wang YJ. Characterization of different starches oxidized by hypochlorite. Starch-Stärke. 2015;53(5):211–8.

    Google Scholar 

  84. Adebowale KO, Lawal OS. Functional properties and retrogradation behaviour of native and chemically modified starch of mucuna bean (Mucuna Pruriens). J Sci Food Agric. 2003;83(83):1541–6.

    CAS  Google Scholar 

  85. Chan HT, Bhat R, Karim AA. Physicochemical and functional properties of ozone-oxidized starch. J Agric Food Chem. 2009;57(13):5965–70.

    CAS  PubMed  Google Scholar 

  86. Oladebeye AO, Oshodi AA, Amoo IA, Karim AA. Functional, thermal and molecular behaviours of ozone-oxidised cocoyam and yam starches. Food Chem. 2013;141(2):1416–23.

    CAS  PubMed  Google Scholar 

  87. Wang L, Wang YJ. Structures and physicochemical properties of acid-thinned corn, potato and rice starches. Starch-Stärke. 2015;53(11):570–6.

    Google Scholar 

  88. Atichokudomchai N, Varavinit S, Chinachoti P. A study of ordered structure in acid-modified tapioca starch by 13C CP/MAS solid-state NMR. Carbohydr Polym. 2004;58(4):383–9.

    CAS  Google Scholar 

  89. Wang S, Copeland L. Effect of acid hydrolysis on starch structure and functionality: a review. Crit Rev Food Sci Nutr. 2015;55(8):1081–97.

    CAS  PubMed  Google Scholar 

  90. Norman BE. The use of debranching enzymes in dextrose syrup production. Starch-Stärke. 1982:157–79.

    Google Scholar 

  91. Keeratiburana T, Hansen AR, Soontaranon S, Blennow A, Tongta S. Porous high amylose rice starch modified by amyloglucosidase and maltogenic α-amylase. Carbohydr Polym. 2020;230:115611.

    PubMed  Google Scholar 

  92. Pandey A, Soccol CR, Soccol VT. Biopotential of immobilized amylases. Indian J Microbiol. 2000;40(1):1–14.

    Google Scholar 

  93. Hyun HH, Zeikus JG. Regulation and genetic enhancement of beta-amylase production in clostridium thermosulfurogenes. J Bacteriol. 1985;164(3):1162–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Taniguchi H, Odashima F, Igarashi M, Maruyama Y, Nakamura M. Characterization of a potato starch-digesting bacterium and its production of amylase. J Agric Chem Soc Jpn. 1982;46(8):2107–015.

    CAS  Google Scholar 

  95. Jacob J, Geβler K, Hoffmann D, Sanbe H, Koizumi K, Smith SM, et al. Band-flip and kink as novel structural motifs in α-(1→4)-d-glucose oligosaccharides. Crystal structures of cyclodeca- and cyclotetradecaamylose. Carbohydr Res. 1999;322(3–4):228–46.

    CAS  Google Scholar 

  96. Veen BAVD, Uitdehaag JCM, Dijkstra BW, Dijkhuizen L. Engineering of cyclodextrin glycosyltransferase reaction and product specificity. Biochim Biophys Acta. 2000;1543(2):336–60.

    PubMed  Google Scholar 

  97. Kitahata S, Taniguchi M, Beltran SD, Sugimoto T, Okada S. Purification and some properties of cyclodextrinase from Bacillus coagulans. J Agric Chem Soc Jpn. 1983;47(7):1441–7.

    CAS  Google Scholar 

  98. Depinto JA, Campbell LL. Purification and properties of the cyclodextrinase of Bacillus macerans. Biochemistry. 1968;7(1):121–5.

    CAS  PubMed  Google Scholar 

  99. Bender H, Lehmann J, Wallenfels K. Pullulan, an extracellular glucan from Pullularia pullulans. Biochim Biophys Acta. 1959;36(2):309–16.

    CAS  PubMed  Google Scholar 

  100. Barnett C, Smith A, Scanlon B, Israilides CJ. Pullulan production by Aureobasidium pullulans growing on hydrolysed potato starch waste. Carbohydr Polym. 1999;38(3):203–9.

    CAS  Google Scholar 

  101. Saha BC, Zeikus JG. Novel highly thermostable pullulanase from thermophiles. Trends Biotechnol. 1989;7(9):234–9.

    CAS  Google Scholar 

  102. Hii SL, Tan JS, Ling TC, Ariff AB. Pullulanase: role in starch hydrolysis and potential industrial applications. Enzyme Res. 2012;2012(1):921362.

    PubMed  PubMed Central  Google Scholar 

  103. Hassan KS, James B. Effect of pullulanase and α-amylase on hydrolysis of waxy corn starch. Starch-Stärke. 2010;42(12):482–6.

    Google Scholar 

  104. Maarel MJEC, Bvd V, JCM U, Leemhuis H, Dijkhuizen L. Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol. 2002;94(2):137–55.

    PubMed  Google Scholar 

  105. Kelkar HS, Deshpande MV. Purification and characterization of a pullulan-hydrolyzing glucoamylase from Sclerotium rolfsii. Starch-Stärke. 1993;45(10):361–8.

    CAS  Google Scholar 

  106. Kaur B, Ariffin F, Bhat R, Karim AA. Progress in starch modification in the last decade. Food Hydrocoll. 2012;26(2):398–404.

    CAS  Google Scholar 

  107. Takaha T, Smith SM. The functions of 4-α-glucanotransferases and their use for the production of cyclic glucans. Biotechnol Genet Eng Rev. 1999;16(1):257–80.

    CAS  PubMed  Google Scholar 

  108. Panozzo JF, Mccormick KM. The rapid viscoanalyser as a method of testing for noodle quality in a wheat breeding programme. J Cereal Sci. 1993;17(1):25–32.

    Google Scholar 

  109. Luyten H, Vliet TV. Influence of a filler on the rheological and fracture properties of food materials. In: Carter RE, editor. Rheology of food, pharmaceutical and biological materials with general rheology. Barking: Elsevier Applied Science; 1990. p. 43–56.

    Google Scholar 

  110. Dhall RK. Advances in edible coatings for fresh fruits and vegetables: a review. Crit Rev Food Sci Nutr. 2013;53(5):435–50.

    CAS  PubMed  Google Scholar 

  111. Jiménez A, Talens P, Chiralt A. Edible and biodegradable starch films: a review. Food Bioprocess Technol. 2012;5(6):2058–76.

    Google Scholar 

  112. Lee HL, Yoo B, Lee HL, Yoo B. Effect of hydroxypropylation on physical and rheological properties of sweet potato starch. LWT-Food Sci Technol. 2011;44(3):765–70.

    CAS  Google Scholar 

  113. Shah A, Masoodi FA, Gani A, Ashwar BA. Physicochemical, rheological and structural characterization of acetylated oat starches. LWT-Food Sci Technol. 2017;80:19–26.

    CAS  Google Scholar 

  114. Zhao J, Chen Z, Jin Z, Buwalda P, Gruppen H, Schols HA. Effects of granule size of cross-linked and hydroxypropylated sweet potato starches on their physicochemical properties. J Agric Food Chem. 2015;63(18):4646–54.

    CAS  PubMed  Google Scholar 

  115. Sukhija S, Singh S, Riar CS. Effect of oxidation, cross-linking and dual modification on physicochemical, crystallinity, morphological, pasting and thermal characteristics of elephant foot yam (Amorphophallus paeoniifolius) starch. Food Hydrocoll. 2016;55:56–64.

    CAS  Google Scholar 

  116. Sahlstrom S, Brathen E. Effects of enzyme preparations for baking, mixing time and resting time on bread quality and bread staling. Food Chem. 1997;58(1):75–80.

    Google Scholar 

  117. Miao M, Xiong S, Jiang B, Jiang H, Cui SW, Zhang T. Dual-enzymatic modification of maize starch for increasing slow digestion property. Food Hydrocoll. 2014;38(6):180–5.

    CAS  Google Scholar 

  118. Abraham TE, Jamuna R, Bansilal CV, Ramakrishna SV. Continuous synthesis of glucoamylase by immobilized fungal mycelium of Aspergillus niger. Starch-Stärke. 2010;43(3):113–6.

    Google Scholar 

  119. Berghofer E, Sarhaddar S. Production of glucose and high fructose syrup by enzymatic direct hydrolysis of cassava roots. Process Biochem. 1988;23(6):188–94.

    Google Scholar 

  120. Gomes I, Gomes J, Steiner W. Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium rhodothermus marinus: production and partial characterization. Bioresour Technol. 2003;90(2):207–14.

    CAS  PubMed  Google Scholar 

  121. Maarel MJEC, Capron I, GJW E, Bos HT, Kaper T, Binnema DJ, et al. A novel thermoreversible gelling product made by enzymatic modification of starch. Starch-Stärke. 2010;57(10):465–72.

    Google Scholar 

  122. Arnoc A, Velde FVD, Marjaw K, Maurits B, Leo M, Arjen S, et al. Improved creaminess of low-fat yoghurt: the impact of amylomaltase-treated starch domains. Food Hydrocoll. 2009;23(3):980–7.

    Google Scholar 

  123. Pedersen S, Dijkhuizen L, Dijkstra B, Jensen BF, Jörgensen ST. A better enzyme for cyclodextrins. ChemTech. 1995;25(12):19–25.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, S., Wang, J., Liu, Y., Liu, X. (2020). Starch Modification and Application. In: Wang, S. (eds) Starch Structure, Functionality and Application in Foods. Springer, Singapore. https://doi.org/10.1007/978-981-15-0622-2_8

Download citation

Publish with us

Policies and ethics