Skip to main content

Abstract

Starch and lipids are the two major components in food products, and amylose is an important component in starch granules. In some native and processed starches, amylose may bind with lipids to form amylose–lipid complex, which will significantly affect the starch properties. This chapter introduces three types of methods for amylose–lipid complex formation, i.e., classical, enzymatic, and thermomechanical, and factors affecting complex formation are discussed in detail. The effects of amylose–lipid complexes on starch properties are addressed, including digestibility, solubility, gelatinization properties, rheological properties, and retrogradation. As a new type of resistant starch, the health implications of the amylose–lipid complex are also discussed at the end of this chapter. Amylose–lipid complexes can influence glycemic and insulin levels and reduce risk of colon cancer, and it can also be used for nano-encapsulation of bioactive or sensitive substances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ai Y, Hasjim J, Jane JL. Effects of lipids on enzymatic hydrolysis and physical properties of starch. Carbohydr Polym. 2013;92(1):120–7.

    CAS  PubMed  Google Scholar 

  2. Morrison WR, Milligan TP, Azudin MN. A relationship between the amylose and lipid contents of starches from diploid cereals. J Cereal Sci. 1984;2(4):257–71.

    CAS  Google Scholar 

  3. Morrison WR, Law RV, Snape CE. Evidence for inclusion complexes of lipids with V-amylose in maize, rice and oat starches. J Cereal Sci. 1993;18(2):107–9.

    CAS  Google Scholar 

  4. Hasjim J, Lee SO, Hendrich S, Setiawan S, Ai YF, Jane J. Characterization of a novel resistant-starch and its effects on postprandial plasma-glucose and insulin responses. Cereal Chem. 2010;87(4):257–62.

    CAS  Google Scholar 

  5. Jane JL, Robyt JF. Structure studies of amylose-V complexes and retrograded amylose by action of alpha amylases, and a new method for preparing amylodextrins. Carbohydr Res. 1984;132(1):105–18.

    CAS  PubMed  Google Scholar 

  6. Jane JL, Robyt JF, Huang DH. 13C-N.M.R. study of the conformation of helical complexes of amylodextrin and of amylose in solution. Carbohydr Res. 1985;140(1):21.

    CAS  PubMed  Google Scholar 

  7. Jane JL, Craig SAS, Seib PA, Hoseney RC. A granular cold water-soluble starch gives a V-type X-ray diffraction pattern. Carbohydr Res. 1986;150(1):c5–6.

    Google Scholar 

  8. Jane JL, Craig SAS, Seib PA, Hoseney RC. Characterization of granular cold water-soluble starch. Starch-Stärke. 2010;38(8):258–63.

    Google Scholar 

  9. Eliasson AC, Ljunger G. Interactions between amylopectin and lipid additives during retrogradation in a model system. J Sci Food Agric. 1988;44(4):353–61.

    CAS  Google Scholar 

  10. Seneviratne HD, Biliaderis CG. Action of α-amylases on amylose-lipid complex superstructures. J Cereal Sci. 1991;13(2):129–43.

    CAS  Google Scholar 

  11. Tufvesson F, Wahlgren M, Eliasson AC. Formation of amylose-lipid complexes and effects of temperature treatment. Part 1. Monoglycerides. Starch-Stärke. 2003;55(2):61–71.

    CAS  Google Scholar 

  12. Eerlingen RC, Delcour JA. Formation, analysis, structure and properties of type III enzyme resistant starch. J Cereal Sci. 1995;22(2):129–38.

    CAS  Google Scholar 

  13. Hasjim J, Ai Y, Jane JL. Novel applications of amylose-lipid complex as resistant starch type 5. In: Shi YC, Maningat CC, editors. Resistant starch. Hoboken, NJ: Wiley; 2013. p. 79–94.

    Google Scholar 

  14. Holm J, Björck I, Ostrowska S, Eliasson AC, Asp NG, Larsson K, et al. Digestibility of amylose-lipid complexes in-vitro and in-vivo. Starch-Stärke. 2010;35(9):294–7.

    Google Scholar 

  15. Birt DF, Boylston T, Hendrich S, et al. Resistant starch: promise for improving human health. Adv Nutr. 2003;4(6):587–601.

    Google Scholar 

  16. Obiro WC, Ray SS, Emmambux MN. V-amylose structural characteristics, methods of preparation, significance, and potential applications. Food Rev Intl. 2012;28(4):412–38.

    CAS  Google Scholar 

  17. Putseys JA, Lamberts L, Delcour JA. Amylose-inclusion complexes: formation, identity and physico-chemical properties. J Cereal Sci. 2010;51(3):238–47.

    CAS  Google Scholar 

  18. Seo TR, Kim JY, Lim ST. Preparation and characterization of crystalline complexes between amylose and C18 fatty acids. LWT-Food Sci Technol. 2015;64(2):889–97.

    CAS  Google Scholar 

  19. Derycke V, Vandeputte GE, Vermeylen R, Man W, Goderis B, Mhj K, et al. Starch gelatinization and amylose-lipid interactions during rice parboiling investigated by temperature resolved wide angle X-ray scattering and differential scanning calorimetry. J Cereal Sci. 2005;42(3):334–43.

    CAS  Google Scholar 

  20. Wulff G, Avgenaki G, Guzmann MSP. Molecular encapsulation of flavours as helical inclusion complexes of amylose. J Cereal Sci. 2005;41(3):239–49.

    CAS  Google Scholar 

  21. Becker A, Hill SE, Mitchell JR. Relevance of amylose-lipid complexes to the behaviour of thermally processed starches. Starch-Stärke. 2001;53(3–4):121–30.

    CAS  Google Scholar 

  22. Lalush I, Bar H, Zakaria I, et al. Utilization of amylose-lipid complexes as molecular nanocapsules for conjugated linoleic. Biomacromolecules. 2005;6(1):121–30.

    CAS  PubMed  Google Scholar 

  23. Gelders GG, Duyck JP, Goesaert H, Delcour JA. Enzyme and acid resistance of amylose-lipid complexes differing in amylose chain length, lipid and complexation temperature. Carbohydr Polym. 2005;60(3):379–89.

    CAS  Google Scholar 

  24. Putseys JA, Derde LJ, Lamberts L, Goesaert H, Delcour JA. Production of tailor made short chain amylose-lipid complexes using varying reaction conditions. Carbohydr Polym. 2009;78(4):854–61.

    CAS  Google Scholar 

  25. Fanta GF, Felker FC, Shogren RL. Formation of crystalline aggregates in slowly-cooled starch solutions prepared by steam jet cooking. Carbohydr Polym. 2002;48(2):161–70.

    CAS  Google Scholar 

  26. Fanta GF, Kenar JA, Felker FC. Nanoparticle formation from amylose-fatty acid inclusion complexes prepared by steam jet cooking. Ind Crop Prod. 2015;74:36–44.

    CAS  Google Scholar 

  27. Meng S, Ma Y, Cui J, Sun DW. Preparation of corn starch-fatty acid complexes by high-pressure homogenization. Starch-Stärke. 2015;66(9–10):809–17.

    Google Scholar 

  28. Nelles EM, Dewar J, Bason ML, Jrn T. Maize starch biphasic pasting curves. J Cereal Sci. 2000;31(3):287–94.

    CAS  Google Scholar 

  29. D’Silva TV, Taylor JRN, Emmambux MN. Enhancement of the pasting properties of teff and maize starches through wet-heat processing with added stearic acid. J Cereal Sci. 2011;53(2):192–7.

    Google Scholar 

  30. Wokadala OC, Ray SS, Emmambux MN. Occurrence of amylose-lipid complexes in teff and maize starch biphasic pastes. Carbohydr Polym. 2012;90(1):616–22.

    CAS  PubMed  Google Scholar 

  31. De PT, Derossi A, Talja RA, Jouppila K, Severini C. Study of starch-lipid complexes in model system and real food produced using extrusion-cooking technology. Innov Food Sci Emerg Technol. 2011;12(4):610–6.

    Google Scholar 

  32. Kong L, Ziegler GR. Molecular encapsulation of ascorbyl palmitate in preformed V-type starch and amylose. Carbohydr Polym. 2014;111:256–63.

    CAS  PubMed  Google Scholar 

  33. Nakazawa Y. Effect of annealing on starch? Palmitic acid interaction. Carbohydr Polym. 2004;57(3):327–35.

    CAS  Google Scholar 

  34. Chang F, He X, Huang Q. The physicochemical properties of swelled maize starch granules complexed with lauric acid. Food Hydrocoll. 2013;32(2):365–72.

    CAS  Google Scholar 

  35. Fu Z, Chen J, Luo S-J, Liu C-M, Liu W. Effect of food additives on starch retrogradation: a review. Starch-Stärke. 2015;67(1–2):69–78.

    CAS  Google Scholar 

  36. Eliasson AC, Kare L, editors. Cereals in breadmaking: a molecular colloidal approach. New York: Marcel Dekker; 1993.

    Google Scholar 

  37. Cornejo-Ramírez YI, Martínez-Cruz O, Del Toro-Sánchez CL, Wong-Corral FJ, Borboa-Flores J, Cinco-Moroyoqui FJ. The structural characteristics of starches and their functional properties. CyTA-J Food. 2018;16(1):1003–17.

    Google Scholar 

  38. Singh S, Singh N, Isono N, Noda T. Relationship of granule size distribution and amylopectin structure with pasting, thermal, and retrogradation properties in wheat starch. J Agric Food Chem. 2010;58(2):1180–8.

    CAS  PubMed  Google Scholar 

  39. D’Silva TV. Modification of the paste properties of maize and teff starches using stearic acid. Doctoral dissertation, University of Pretoria; 2011.

    Google Scholar 

  40. Eliasson AC, Finstad H, Ljunger G. A study of starch-lipid interactions for some native and modified maize starches. Starch-Stärke. 2010;40(3):95–100.

    Google Scholar 

  41. Godet MC, Bizot H, Buleon A. Crystallization of amylose-fatty acid complexes prepared with different amylose chain lengths. Carbohydr Polym. 1995;27(95):47–52.

    CAS  Google Scholar 

  42. Gelders GG, Vanderstukken TC, Goesaert H, Delcour JA. Amylose-lipid complexation: a new fractionation method. Carbohydr Polym. 2004;56(4):447–58.

    CAS  Google Scholar 

  43. Karkalas J, Ma S, Morrison WR, Pethrick RA. Some factors determining the thermal properties of amylose inclusion complexes with fatty acids. Carbohydr Res. 1995;268(2):233–47.

    CAS  Google Scholar 

  44. Tufvesson F, Wahlgren M, Eliasson AC. Formation of amylose-lipid complexes and effects of temperature treatment. Part 2. Fatty acids. Starch-Stärke. 2003;55(3–4):138–49.

    CAS  Google Scholar 

  45. Tufvesson F, Eliasson AC. Formation and crystallization of amylose-monoglyceride complex in a starch matrix. Carbohydr Polym. 2000;43(4):359–65.

    CAS  Google Scholar 

  46. Heinemann C, Zinsli M, Renggli A, Escher F, Condepetit B. Influence of amylose-flavor complexation on build-up and breakdown of starch structures in aqueous food model systems. LWT-Food Sci Technol. 2005;38(8):885–94.

    CAS  Google Scholar 

  47. Zabar S, Lesmes U, Katz I, Shimoni E, Biancopeled H. Studying different dimensions of amylose-long chain fatty acid complexes: molecular, nano and micro level characteristics. Food Hydrocoll. 2009;23(7):1918–25.

    CAS  Google Scholar 

  48. Eliasson AC, Krog N. Physical properties of amylose-monoglyceride complexes. J Cereal Sci. 1985;3(3):239–48.

    CAS  Google Scholar 

  49. Hinkle ME, Zobel HF. X-ray diffraction of oriented amylose fibers. III. The structure of amylose-n-butanol complexes. Biopolymers. 2010;6(8):1119–28.

    Google Scholar 

  50. Nuessli J, Sigg B, Condepetit B, Escher F. Characterization of amylose-flavour complexes by DSC and X-ray diffraction. Food Hydrocoll. 1997;11(1):27–34.

    CAS  Google Scholar 

  51. Siswoyo TA, Morita N. Physicochemical studies of defatted wheat starch complexes with mono and diacyl-sn-glycerophosphatidylcholine of varying fatty acid chain lengths. Food Res Int. 2003;36(7):729–37.

    CAS  Google Scholar 

  52. Cui R, Oates CG. The effect of amylose-lipid complex formation on enzyme susceptibility of sago starch. Food Chem. 1999;65(4):417–25.

    CAS  Google Scholar 

  53. Siswoyo TA, Morita N. Thermal properties and kinetic parameters of amylose-glycerophosphatidylcholine complexes with various acyl chain lengths. Food Res Int. 2002;35(8):737–44.

    CAS  Google Scholar 

  54. Tang MC, Copeland L. Analysis of complexes between lipids and wheat starch. Carbohydr Polym. 2007;67(1):80–5.

    CAS  Google Scholar 

  55. Jovanovich G, Anon MC. Amylose-lipid complex dissociation. A study of the kinetic parameters. Biopolymers. 1999;49(1):81–9.

    CAS  Google Scholar 

  56. Jovanovich G, Zamponi RA, Lupano CE, Anon MC. Effect of water content on the formation and dissociation of the amylose-lipid complex in wheat flour. J Agric Food Chem. 1992;40(10):1789–93.

    CAS  Google Scholar 

  57. Fanta GF, Shogren RL, Salch JH. Steam jet cooking of high-amylose starch-fatty acid mixtures. An investigation of complex formation. Carbohydr Polym. 1999;38(1):1–6.

    CAS  Google Scholar 

  58. Villwock VK, Eliasson AC, Silverio J, BeMiller JN. Starch-lipid interactions in common, waxy, ae du, and ae su2 maize starches examined by differential scanning calorimetry. Cereal Chem J. 1999;76(2):292–8.

    CAS  Google Scholar 

  59. Tapanapunnitikul O, Chaiseri S, Peterson DG, et al. Water solubility of flavor compounds influences formation of flavor inclusion complexes from dispersed high-amylose maize starch. J Agric Food Chem. 2008;56(1):220–6.

    CAS  PubMed  Google Scholar 

  60. Bhosale RG, Ziegler GR. Preparation of spherulites from amylose-palmitic acid complexes. Carbohydr Polym. 2010;80(1):53–64.

    CAS  Google Scholar 

  61. Bhatnagar S, Hanna MA. Extrusion processing conditions for amylose-lipid complexing. Cereal Chem. 1994;71(6):587–93.

    CAS  Google Scholar 

  62. Biliaderis CG, Galloway G. Crystallization behavior of amylose-V complexes: structure-property relationships. Carbohydr Res. 1989;189(12):31–48.

    CAS  Google Scholar 

  63. Biliaderis CG, Page CM, Maurice TJ. Non-equilibrium melting of amylose-V complexes. Carbohydr Polym. 1986;6(4):269–88.

    CAS  Google Scholar 

  64. Buléon A, Delage MM, Brisson J, Chanzy H. Single crystals of V amylose complexed with isopropanol and acetone. Int J Biol Macromol. 1990;12(1):25–33.

    PubMed  Google Scholar 

  65. Tufvesson F, Wahlgren M, Eliasson AC. Formation of amylose-lipid complexes and effects of temperature treatment. Part 1. Monoglycerides. Starch-Starke. 2003;55(2):61–71.

    CAS  Google Scholar 

  66. Yotsawimonwat S, Sriroth K, Kaewvichit S, Piyachomkwan K, Jane JL, Sirithunyalug J. Effect of pH on complex formation between debranched waxy rice starch and fatty acids. Int J Biol Macromol. 2008;43(2):94–9.

    CAS  PubMed  Google Scholar 

  67. Anil G, Harold C. Effect of hydroxypropyl β-cyclodextrin on physical properties and transition parameters of amylose-lipid complexes of native and acetylated starches. Food Chem. 2008;108(1):14–22.

    Google Scholar 

  68. Tian Y, Yang N, Li Y, Xu X, Zhan J, Jin Z. Potential interaction between β-cyclodextrin and amylose-lipid complex in retrograded rice starch. Carbohydr Polym. 2010;80(2):581–4.

    CAS  Google Scholar 

  69. Zhang G, Hamaker BR. Starch-free fatty acid complexation in the presence of whey protein. Carbohydr Polym. 2004;55(4):419–24.

    CAS  Google Scholar 

  70. Mantzari G, Raphaelides SN, Exarhopoulos S. Effect of sorbitol addition on the physicochemical characteristics of starch-fatty acid systems. Carbohydr Polym. 2010;79(1):154–63.

    CAS  Google Scholar 

  71. Tester R, Morrison W. Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose and lipids. Cereal Chem. 1990;67:551–7.

    CAS  Google Scholar 

  72. Biliaderis CG, Tonogai JR. Influence of lipids on the thermal and mechanical properties of concentrated starch gels. J Agric Food Chem. 1991;39(5):833–40.

    CAS  Google Scholar 

  73. Mira I, Villwock VK, Persson K. On the effect of surface active agents and their structure on the temperature-induced changes of normal and waxy wheat starch in aqueous suspension. Part II: A confocal laser scanning microscopy study. Carbohydr Polym. 2007;68(4):637–46.

    CAS  Google Scholar 

  74. Eliasson AC, Larsson K, Miezis Y. On the possibility of modifying the gelatinization properties of starch by lipid surface coating. Starch-Stärke. 1981;33(7):231–5.

    Google Scholar 

  75. Galloway GI, Biliaderis CG, Stanley DW. Properties and structure of amylose-glyceryl monostearate complexes formed in solution or on extrusion of wheat flour. J Food Sci. 1989;54(4):950–7.

    CAS  Google Scholar 

  76. Ghiasi K, Varrianomarston E, Hoseney RC. Gelatinization of wheat starch. II. Starch-surfactant interaction. Cereal Chem. 1982;59(2):86–8.

    CAS  Google Scholar 

  77. Larsson K. Inhibition of starch gelatinization by amylose-lipid complex formation. Starch-Stärke. 1980;32(4):125–6.

    CAS  Google Scholar 

  78. Lonkhuysen HV, Blankestijn J. Influence of monoglycerides on the gelatinization and enzymatic breakdown of wheat and cassava starch. Starch-Stärke. 1976;28(7):227–33.

    Google Scholar 

  79. Hoover R, Hadziyev D. Characterization of potato starch and its monoglyceride complexes. Starch-Stärke. 1981;33(9):290–300.

    CAS  Google Scholar 

  80. Eliasson AC, Carlson LG, Larsson K. Some effects of starch lipids on the thermal and rheological properties of wheat starch. Starch-Stärke. 1981;33(4):130–4.

    CAS  Google Scholar 

  81. Melvin MA. The effect of extractable lipid on the viscosity characteristics of corn and wheat starches. J Sci Food Agric. 2010;30(7):731–8.

    Google Scholar 

  82. Raphaelides SN, Georgiadis N. Effect of fatty acids on the rheological behaviour of maize starch dispersions during heating. Carbohydr Polym. 2006;65(1):81–92.

    CAS  Google Scholar 

  83. Kugimiya M, Donovan JW, Wong RY. Phase transitions of amylose-lipid complexes in starches: a calorimetric study. Starch-Stärke. 1980;32(8):265–70.

    CAS  Google Scholar 

  84. Biliaderis CG, Page CM, Slade L, Sirett RR. Thermal behavior of amylose. Carbohydr Polym. 1985;5(5):367–89.

    CAS  Google Scholar 

  85. Biliaderis CG, Page CM, Maurice TJ. On the multiple melting transitions of starch/monoglyceride systems. Food Chem. 1986;22(4):279–95.

    CAS  Google Scholar 

  86. Snape CE, Morrison WR, Marotovaler MM, Karkalas J, Pethrick RA. Solid state 13C NMR investigation of lipid ligands in V-amylose inclusion complexes. Carbohydr Polym. 1998;36(2–3):225–37.

    CAS  Google Scholar 

  87. Raphaelides S, Georgiadis N. Effect of fatty acids on the rheological behaviour of amylomaize starch dispersions during heating. Food Hydrocoll. 2008;41(1):75–88.

    CAS  Google Scholar 

  88. Ing NK. Influence of food emulsifiers on pasting temperature and viscosity of various starches. Starch-Stärke. 1973;25(1):22–7.

    Google Scholar 

  89. Navarro AS. Modelling of rheological behaviour in starch-lipid systems. LWT-Food Sci Technol. 1996;29(7):632–9.

    CAS  Google Scholar 

  90. Singh J, Singh N, Saxena SK. Effect of fatty acids on the rheological properties of corn and potato starch. J Food Eng. 2002;52(1):9–16.

    Google Scholar 

  91. Gelders GG, Goesaert H, Delcour JA. Amylose-lipid complexes as controlled lipid release agents during starch gelatinization and pasting. J Agric Food Chem. 2006;54(4):1493–9.

    CAS  PubMed  Google Scholar 

  92. Raphaelides SN. Rheological studies of starch-fatty acid gels. Food Hydrocoll. 1993;7(6):479–95.

    CAS  Google Scholar 

  93. Richardson G, Langton M, Bark A, Hermansson AM. Wheat starch gelatinization-the effects of sucrose, emulsifier and the physical state of the emulsifier. Starch-Starke. 2003;55(3–4):150–61.

    CAS  Google Scholar 

  94. Chang F, He X, Fu X, Huang Q, Jane JL. Effects of heat treatment and moisture contents on interactions between lauric acid and starch granules. J Agric Food Chem. 2014;62(31):7862–8.

    CAS  PubMed  Google Scholar 

  95. Blazek J, Copeland L. Pasting and swelling properties of wheat flour and starch in relation to amylose content. Carbohydr Polym. 2008;71(3):380–7.

    CAS  Google Scholar 

  96. Nuessli J, Conde-Petit B, Trommsdorff UR, Escher F. Influence of starch flavour interactions on rheological properties of low concentration starch systems. Carbohydr Polym. 1995;28(2):167–70.

    CAS  Google Scholar 

  97. Conde-Petit B, Escher F. Gelation of low concentration starch systems induced by starch emulsifier complexation. Food Hydrocoll. 1992;6(2):223–9.

    CAS  Google Scholar 

  98. Conde-Petit B, Escher F. Complexation induced changes of rheological properties of starch systems at different moisture levels. J Rheol. 1995;39(39):1497–518.

    CAS  Google Scholar 

  99. Byars JA, Fanta GF, Felker FC. Rheological properties of starch-oil composites with high oil-to-starch ratios. Cereal Chem. 2011;88(3):260–3.

    CAS  Google Scholar 

  100. Czuchajowska Z, Sievert D, Pomeranz Y. Enzyme-resistant starch. IV. Effects of complexing lipids. Cereal Chem. 1991;68(5):241–6.

    Google Scholar 

  101. Gudmundsson M. Effects of an added inclusion-amylose complex on the retrogradation of some starches and amylopectin. Carbohydr Polym. 1992;17(4):299–304.

    CAS  Google Scholar 

  102. Sievert D, Wursch P. Thermal behavior of potato amylose and enzyme-resistant starch from maize. J Appl Phys. 1993;75(5):2502–6.

    Google Scholar 

  103. Tufvesson F, Skrabanja V, Bjorck I, Elmstahl HL, Eliasson AC. Digestibility of starch systems containing amylose-glycerol monopalmitin complexes. LWT-Food Science and Technology. 2001;34(3):131–9.

    CAS  Google Scholar 

  104. Wang S, Wang J, Yu J, Wang S. Effect of fatty acids on functional properties of normal wheat and waxy wheat starches: a structural basis. Food Chem. 2016;190:285–92.

    CAS  PubMed  Google Scholar 

  105. Purhagen JK, Sjöö ME, Eliasson A-C. The anti-staling effect of pre-gelatinized flour and emulsifier in gluten-free bread. Eur Food Res Technol. 2012;235(2):265–76.

    CAS  Google Scholar 

  106. Fuenteszaragoza E, Riquelmenavarrete MJ, Sánchezzapata E, Pérezálvarez JA. Resistant starch as functional ingredient: a review. Food Res Int. 2010;43(4):931–42.

    CAS  Google Scholar 

  107. Lau E, Zhou W, Henry CJ. Effect of fat type in baked bread on amylose-lipid complex formation and glycaemic response. Br J Nutr. 2016;115(12):2122.

    CAS  PubMed  Google Scholar 

  108. Zhao Y, Ai Y, Li L, Jane JL, Hendrich S, Birt DF. Inhibition of azoxymethane-induced preneoplastic lesions in the rat colon by a stearic acid complexed high-amylose cornstarch using different cooking methods and assessing potential gene targets. J Funct Foods. 2014;6(1):499–512.

    CAS  Google Scholar 

  109. Zhao Y, Hasjim J, Li L, Jane JL, Hendrich S, Birt DF. Inhibition of azoxymethane-induced preneoplastic lesions in the rat colon by a cooked stearic acid complexed high-amylose cornstarch. J Agric Food Chem. 2011;59(17):9700.

    CAS  PubMed  Google Scholar 

  110. Ma UVL, Floros JD, Ziegler GR. Formation of inclusion complexes of starch with fatty acid esters of bioactive compounds. Carbohydr Polym. 2011;83(4):1869–78.

    CAS  Google Scholar 

  111. Ai Y, Zhao Y, Nelson B, Birt DF, Wang T, Jane JL. Characterization and in vivo hydrolysis of amylose-stearic acid complex. Cereal Chem. 2014;91(5):466–72.

    CAS  Google Scholar 

  112. Kawai K, Takato S, Sasaki T, Kajiwara K. Complex formation, thermal properties, and in-vitro digestibility of gelatinized potato starch-fatty acid mixtures. Food Hydrocoll. 2012;27(1):228–34.

    CAS  Google Scholar 

  113. Takase S, Goda T, Watanabe M. Monostearoylglycerol-starch complex: its digestibility and effects on glycemic and lipogenic responses. J Nutr Sci Vitaminol. 1994;40(1):23.

    CAS  PubMed  Google Scholar 

  114. Cryer PE. Symptoms of hypoglycemia, thresholds for their occurrence, and hypoglycemia unawareness. Endocrinol Metab Clin N Am. 1999;28(3):495–500.

    CAS  Google Scholar 

  115. Weinger K, Jacobson AM, Draelos MT, Finkelstein DM, Simonson DC. Blood glucose estimation and symptoms during hyperglycemia and hypoglycemia in patients with insulin-dependent diabetes mellitus. Am J Med. 1995;98(1):22–31.

    CAS  PubMed  Google Scholar 

  116. Byrnes SE, Miller JC, Denyer GS. Amylopectin starch promotes the development of insulin resistance in rats. J Nutr. 1995;125(6):1430.

    CAS  PubMed  Google Scholar 

  117. Higgins JA. Resistant starch: metabolic effects and potential health benefits. J AOAC Int. 2004;87(3):761.

    CAS  PubMed  Google Scholar 

  118. Arakaki J, Suzui M, Morioka T, Kinjo T, Kaneshiro T, Inamine M, et al. Antioxidative and modifying effects of a tropical plant Azadirachta indica (Neem) on azoxymethane-induced preneoplastic lesions in the rat colon. Asian Pac J Cancer Prev. 2006;7(3):467–71.

    PubMed  Google Scholar 

  119. Mclellan EA, Medline A, Bird RP. Sequential analyses of the growth and morphological characteristics of aberrant crypt foci: putative preneoplastic lesions. Cancer Res. 1991;51(19):5270–4.

    CAS  PubMed  Google Scholar 

  120. Kleessen B, Stoof G, Proll J, Schmiedl D, Noack J, Blaut M. Feeding resistant starch affects fecal and cecal microflora and short-chain fatty acids in rats. J Anim Sci. 1997;75(9):2453.

    CAS  PubMed  Google Scholar 

  121. Silvi S, Rumney CJ, Cresci A, Rowland IR. Resistant starch modifies gut microflora and microbial metabolism in human flora-associated rats inoculated with faeces from Italian and UK donors. J Appl Microbiol. 1999;86(3):521.

    CAS  PubMed  Google Scholar 

  122. Hasjim J, Ai Y, Jane J-L. Novel applications of amylose-lipid complex as resistant starch Type 5. In: Shi Y‐C, Maningat CC, editors. Resistant starch: Sources, applications and health benefits. Hoboken, NJ: Wiley; 2013. p. 79.

    Google Scholar 

  123. Gökmen V, Mogol BA, Lumaga RB, Fogliano V, Kaplun Z, Shimoni E. Development of functional bread containing nanoencapsulated omega-3 fatty acids. J Food Eng. 2011;105(4):585–91.

    Google Scholar 

  124. Yeo L, Thompson DB, Peterson DG. Inclusion complexation of flavour compounds by dispersed high-amylose maize starch (HAMS) in an aqueous model system. Food Chem. 2016;199:393–400.

    CAS  PubMed  Google Scholar 

  125. Kim J-Y, Huber KC. Preparation and characterization of corn starch-β-carotene composites. Carbohydr Polym. 2016;136:394–401.

    CAS  PubMed  Google Scholar 

  126. Lesmes U, Barchechath J, Shimoni E. Continuous dual feed homogenization for the production of starch inclusion complexes for controlled release of nutrients. Innov Food Sci Emerg Technol. 2008;9(4):507–15.

    CAS  Google Scholar 

  127. Shimoni E, Lesmes U, Ungar Y. Non-covalent complexes of bioactive agents with starch for oral delivery. US Patent Application. 2009; No. 12/298,162.

    Google Scholar 

  128. Cohen R, Orlova Y, Kovalev M, Ungar Y, Shimoni E. Structural and functional properties of amylose complexes with genistein. J Agric Food Chem. 2008;56(11):4212–8.

    CAS  PubMed  Google Scholar 

  129. Lesmes U, Cohen SH, Shener Y, Shimoni E. Effects of long chain fatty acid unsaturation on the structure and controlled release properties of amylose complexes. Food Hydrocoll. 2009;23(3):667–75.

    CAS  Google Scholar 

  130. Cohen R, Schwartz B, Peri I, Shimoni E. Improving bioavailability and stability of genistein by complexation with high-amylose corn starch. J Agric Food Chem. 2011;59(14):7932.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This chapter was modified from the paper published by our group in Journal of Food Hydrocolloids, 2013, 32, 365-372. The related contents are re-used with the permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, Q., Chen, X., Wang, S., Zhu, J. (2020). Amylose–Lipid Complex. In: Wang, S. (eds) Starch Structure, Functionality and Application in Foods. Springer, Singapore. https://doi.org/10.1007/978-981-15-0622-2_5

Download citation

Publish with us

Policies and ethics