Skip to main content

Abstract

Native starch granules are mainly stored in the endosperm of cereals, parenchyma of tubers, and cotyledons of legume seeds. The wide range of botanical sources of starches lays a great foundation for their industrial production and applications. Starch occurs naturally as insoluble, semicrystalline granules, made up of amylose and amylopectin. The differences in the characteristics of amylose and amylopectin, and the way they are organized within granules, give rise to considerable variability in the size, shape, and functional properties of starch granules, between and within species. Starches from traditional harvested crops, tubers, and pulses have been extensively studied and used, while the new cultivars and novel sources are also receiving extensive attention due to some unique properties. This chapter gives a general overview of starch from several common crop plants (corn, wheat, cassava, sweet potato, rye, barley, oat, rice, and pulses) and novel sources (medicinal plants and fruits). The granular morphology, characteristics of amylose and amylopectin, crystalline structure, and some typical functional properties are summarized briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zeeman SC, Kossmann J, Smith AM. Starch: Its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol. 2010;61:209–34.

    CAS  PubMed  Google Scholar 

  2. Wang S, Copeland L. Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: A review. Food Funct. 2013;4:1564–80.

    CAS  PubMed  Google Scholar 

  3. Morrison WR, Laignelet B. An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. J Cereal Sci. 1983;1:9–20.

    CAS  Google Scholar 

  4. Zhu T, Jackson DS, Wehling RL, Geera B. Comparison of amylose determination methods and the development of a dual wavelength iodine binding technique. Cereal Chem. 2008;85:51–8.

    CAS  Google Scholar 

  5. Ashogbon AO. Contradictions in the study of some compositional and physicochemical properties of starches from various botanical sources. Starch-Stärke. 2018;70:1600372.

    Google Scholar 

  6. Klucinec JD, Thompson DB. Amylopectin nature and amylose-to-amylopectin ratio as influences on the behavior of gels of dispersed starch. Cereal Chem. 2007;79:24–35.

    Google Scholar 

  7. Fredriksson H, Silverio J, Andersson R, Eliasson AC, Åman P. The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydr Polym. 1998;35:119–34.

    CAS  Google Scholar 

  8. Wang S, Wang J, Yu J, Wang S. A comparative study of annealing of waxy, normal and high-amylose maize starches: The role of amylose molecules. Food Chem. 2014;164:332–8.

    CAS  PubMed  Google Scholar 

  9. Wang S, Jin F, Yu J. Pea starch annealing: New insights. Food Bioprocess Technol. 2013;6:3564–75.

    CAS  Google Scholar 

  10. Lan H, Hoover R, Jayakody L, Liu Q, Donner E, Baga M, et al. Impact of annealing on the molecular structure and physicochemical properties of normal, waxy and high amylose bread wheat starches. Food Chem. 2008;111:663–75.

    CAS  Google Scholar 

  11. O'Brien S, Wang YJ. Susceptibility of annealed starches to hydrolysis by α-amylase and glucoamylase. Carbohydr Polym. 2008;72:597–607.

    CAS  Google Scholar 

  12. Wang S, Li C, Copeland L, Niu Q, Wang S. Starch retrogradation: A comprehensive review. Rev Food Sci Food Saf. 2015;14:568–85.

    CAS  Google Scholar 

  13. Pérez S, Bertoft E. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch-Stärke. 2010;62:389–420.

    Google Scholar 

  14. He W, Wei C. Progress in C-type starches from different plant sources. Food Hydrocolloids. 2017;73:162–75.

    CAS  Google Scholar 

  15. Bogracheva TY, Ring SG, Hedley CL, Morris VJ. The granular structure of C-type pea starch and its role in gelatinization. Biopolymers. 1998;45:323–32.

    CAS  Google Scholar 

  16. Norman WHC, Leping T. Variation in crystalline type with amylose content in maize starch granules: An X-ray powder diffraction study. Carbohydr Polym. 1998;36:277–84.

    Google Scholar 

  17. Hoover R. Composition, molecular structure, and physicochemical properties of tuber and root starches: A review. Carbohydr Polym. 2001;45:253–67.

    CAS  Google Scholar 

  18. Ratnayake WS, Jackson DS. Starch: Sources and processing. Encyclop Food Sci Nutr. 2003:5567–72.

    Google Scholar 

  19. Tester RF, Karkalas J, Qi X. Starch-composition, fine structure and architecture. J Cereal Sci. 2004;39:151–65.

    CAS  Google Scholar 

  20. Vamadevan V, Bertoft E. Structure-function relationships of starch components. Starch-Stärke. 2014;67:55–68.

    Google Scholar 

  21. Ashogbon AO, Akintayo ET. Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch-Stärke. 2014;66:41–57.

    CAS  Google Scholar 

  22. Waterschoot J, Gomand SV, Fierens E, Delcour JA. Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch-Stärke. 2015;67:14–29.

    CAS  Google Scholar 

  23. Srichuwong S, Sunarti TC, Mishima T, Isono N, Hisamatsu M. Starches from different botanical sources. I: Contribution of amylopectin fine structure to thermal properties and enzyme digestibility. Carbohydr Polym. 2005;60:529–38.

    CAS  Google Scholar 

  24. Jenkins PJ, Cameron RE, Donald AM. A universal feature in the structure of starch granules from different botanical sources. Starch-Stärke. 1993;45:417–20.

    CAS  Google Scholar 

  25. Schirmer M, Höchstötter A, Jekle M, Arendt E, Becker T. Physicochemical and morphological characterization of different starches with variable amylose/amylopectin ratio. Food Hydrocolloids. 2013;32:52–63.

    CAS  Google Scholar 

  26. Singh N, Singh J, Kaur L, Sodhi NS, Gill BS. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 2003;81:219–31.

    CAS  Google Scholar 

  27. Kaur M, Singh N, Sandhu KS, Guraya HS. Physicochemical, morphological, thermal and rheological properties of starches separated from kernels of some Indian mango cultivars (Mangifera indica L.). Food Chem. 2004;85:131–40.

    CAS  Google Scholar 

  28. Zhang P, Whistler RL, Bemiller JN, Hamaker BR. Banana starch: Production, physicochemical properties, and digestibility-a review. Carbohydr Polym. 2005;59:443–58.

    CAS  Google Scholar 

  29. Li D, Zhu F. Physicochemical properties of kiwifruit starch. Food Chem. 2017;220:129–36.

    CAS  PubMed  Google Scholar 

  30. Wang S, Gao W, Chen H, Xiao P. New starches from Fritillaria species medicinal plants. Carbohydr Polym. 2005;61:111–4.

    CAS  Google Scholar 

  31. Wang S, Gao W, Jiang W, Xiao P. Crystallography, morphology and thermal properties of starches from four different medicinal plants of Fritillaria species. Food Chem. 2006;96:591–6.

    CAS  Google Scholar 

  32. Wang S, Gao W, Chen H, Xiao P. Studies on the morphological, thermal and crystalline properties of starches separated from medicinal plants. J Food Eng. 2006;76:420–6.

    CAS  Google Scholar 

  33. Wang S, Yu J, Gao W, Pang J, Yu J, Xiao P. Characterization of starch isolated from Fritillaria traditional Chinese medicine (TCM). J Food Eng. 2007;80:727–34.

    CAS  Google Scholar 

  34. Man J, Cai J, Cai C, Huai H, Wei C. Physicochemical properties of rhizome starch from a traditional Chinese medicinal plant of Anemone altaica. Carbohydr Polym. 2012;89:571–7.

    CAS  PubMed  Google Scholar 

  35. Tester RF, Debon SJJ, Sommerville MD. Annealing of maize starch. Carbohydr Polym. 2000;42:287–99.

    CAS  Google Scholar 

  36. Jiang HX, Campbell M, Blanco M, Jane JL. Characterization of maize amylose-extender (ae) mutant starches: Part II. Structures and properties of starch residues remaining after enzymatic hydrolysis at boiling-water temperature. Carbohydr Polym. 2010;80:1–12.

    CAS  Google Scholar 

  37. Guo P, Yu J, Wang S, Wang S, Copeland L. Effects of particle size and water content during cooking on the physicochemical properties and in vitro starch digestibility of milled durum wheat grains. Food Hydrocolloids. 2018;77:445–53.

    CAS  Google Scholar 

  38. Gélinas P, McKinnon C. Gluten weight in ancient and modern wheat and the reactivity of epitopes towards R5 and G12 monoclonal antibodies. Int J Food Sci Technol. 2016;51:1801–10.

    Google Scholar 

  39. Sobota A, Rzedzicki Z, Zarzycki P, Kuzawińska E. Application of common wheat bran for the industrial production of high-fibre pasta. Int J Food Sci Technol. 2015;50:111–9.

    CAS  Google Scholar 

  40. Soulaka AB, Morrison WR. The amylose and lipid contents, dimensions, and gelatinisation characteristics of some wheat starches and their A- and B-granule fractions. J Sci Food Agric. 2010;36:709–18.

    Google Scholar 

  41. Ao Z, Jane J. Characterization and modeling of the A- and B-granule starches of wheat, triticale, and barley. Carbohydr Polym. 2007;67:46–55.

    CAS  Google Scholar 

  42. Hyunseok K, Kerryc H. Physicochemical properties and amylopectin fine structures of A- and B-type granules of waxy and normal soft wheat starch. J Cereal Sci. 2010;51:256–64.

    Google Scholar 

  43. Wilson JD, Bechtel DB, Todd TC, Seib PA. Measurement of wheat starch granule size distribution using image analysis and laser diffraction technology. Cereal Chem. 2007;83:259–68.

    Google Scholar 

  44. Wang S, Luo H, Zhang J, Zhang Y, He Z, Wang S. Alkali-induced changes in functional properties and in vitro digestibility of wheat starch: The role of surface proteins and lipids. J Agric Food Chem. 2014;62:3636–43.

    CAS  PubMed  Google Scholar 

  45. Shinde SV, Nelson JE, Huber KC. Soft wheat starch pasting behavior in relation to A- and B-type granule content and composition. Cereal Chem. 2003;80:91–8.

    CAS  Google Scholar 

  46. Jane JL, Kasemsuwan T, Leas S, Zobel H, Robyt JF. Anthology of starch granule morphology by scanning electron microscopy. Starch-Stärke. 1994;46:121–9.

    CAS  Google Scholar 

  47. Autio K, Eliasson AC. Rye starch. In: BeMiller J, Whistler R, editors. Starch. 3rd ed. New York: Academic Press; 2009. p. 579–87.

    Google Scholar 

  48. Schierbaum DSF, Radosta S, Richter M, Kettlitz B, Dipl Krist CG. Studies on rye starch properties and modification. Part I: Composition and properties of rye starch granules. Starch-Stärke. 1991;43:331–9.

    CAS  Google Scholar 

  49. Gomand SV, Verwimp T, Goesaert H, Delcour JA. Structural and physicochemical characterisation of rye starch. Carbohydr Res. 2011;346:2727–35.

    CAS  PubMed  Google Scholar 

  50. Czuchajowska Z, Klamczynski A, Paszczynska B, Baik BK. Structure and functionality of barley starches. Cereal Chem. 1998;75:747–54.

    CAS  Google Scholar 

  51. Kong X, Kasapis S, Zhu P, Sui Z, Bao J, Corke H. Physicochemical and structural characteristics of starches from Chinese hull-less barley cultivars. Int J Food Sci Technol. 2016;51:509–18.

    CAS  Google Scholar 

  52. Luisarturo BP, Sandral RA, Edith AA, Mirnam SR. Solubilization effects on molecular weights of amylose and amylopectins of normal maize and barley starches. Cereal Chem. 2009;86:701–5.

    Google Scholar 

  53. Waduge RN, Hoover R, Vasanthan T, Gao J, Li J. Effect of annealing on the structure and physicochemical properties of barley starches of varying amylose content. Food Res Int. 2006;39:59–77.

    CAS  Google Scholar 

  54. Li W, Xiao X, Zhang W, Zheng J, Luo Q, Ouyang S, et al. Compositional, morphological, structural and physicochemical properties of starches from seven naked barley cultivars grown in China. Food Res Int. 2014;58:7–14.

    CAS  Google Scholar 

  55. Xu D, Ren G, Liu L, Zhu W, Liu Y. The influences of drying process on crude protein content of naked oat cut herbage (Avena nuda L.). Dry Technol. 2014;32:321–7.

    Google Scholar 

  56. Hu XZ, Zheng JM, Li XP, Xu C, Zhao Q. Chemical composition and sensory characteristics of oat flakes: A comparative study of naked oat flakes from China and hulled oat flakes from western countries. J Cereal Sci. 2014;60:297–301.

    CAS  Google Scholar 

  57. Gudmundsson M, Eliasson AC. Some physico-chemical properties of oat starches extracted from varieties with different oil content. Acta Agric Scand Sect A. 2009;39:101–11.

    Google Scholar 

  58. Hoover R, Smith C, Zhou Y, Ratnayake RMWS. Physicochemical properties of Canadian oat starches. Carbohydr Polym. 2003;52:253–61.

    CAS  Google Scholar 

  59. Hasjim J, Li E, Dhital S. Milling of rice grains: Effects of starch/flour structures on gelatinization and pasting properties. Carbohydr Polym. 2013;92:682–90.

    CAS  PubMed  Google Scholar 

  60. Tian R, Jiang GH, Shen LH, Wang LQ, He YQ. Mapping quantitative trait loci underlying the cooking and eating quality of rice using a DH population. Mol Breed. 2005;15:117–24.

    CAS  Google Scholar 

  61. Kuang Q, Xu J, Wang K, Zhou S, Liu X. Structure and digestion of hybrid Indica rice starch and its biosynthesis. Int J Biol Macromol. 2016;93:402–7.

    CAS  PubMed  Google Scholar 

  62. Ni D, Zhang S, Sheng C, Yong X, Li L, Hao L, et al. Improving cooking and eating quality of Xieyou57, an elite indica hybrid rice, by marker-assisted selection of the Wx locus. Euphytica. 2011;179:355–62.

    Google Scholar 

  63. Ashogbon AO, Akintayo ET. Morphological, functional and pasting properties of starches separated from rice cultivars grown in Nigeria. Int Food Res J. 2012;19:181–7.

    Google Scholar 

  64. Wang S, Li P, Yu J, Guo P, Wang S. Multi-scale structures and functional properties of starches from Indica hybrid, Japonica and waxy rice. Int J Biol Macromol. 2017;102:136–43.

    CAS  PubMed  Google Scholar 

  65. Alvani K, Xin Q, Richard FT, Colin ES. Physico-chemical properties of potato starches. Food Chem. 2011;125:958–65.

    CAS  Google Scholar 

  66. Tong C, Ahmed S, Pang Y, Xin Z, Bao J. Fine structure and gelatinization and pasting properties relationships among starches from pigmented potatoes. Food Hydrocolloids. 2018;83:45–52.

    CAS  Google Scholar 

  67. Ek KL, Wang S, Copeland L, Brand-Miller JC. Discovery of a low-glycaemic index potato and relationship with starch digestion in vitro. Br J Nutr. 2014;111:699–705.

    CAS  PubMed  Google Scholar 

  68. Chung H-J, Li X-Q, Kalinga D, Lim S-T, Yada R, Liu Q. Physicochemical properties of dry matter and isolated starch from potatoes grown in different locations in Canada. Food Res Int. 2014;57:89–94.

    CAS  Google Scholar 

  69. Singh N, Isono N, Srichuwong S, Noda T, Nishinari K. Structural, thermal and viscoelastic properties of potato starches. Food Hydrocolloids. 2008;22:979–88.

    CAS  Google Scholar 

  70. Cooke D, Gidley MJ. Loss of crystalline and molecular order during starch gelatinisation: Origin of the enthalpic transition. Carbohydr Res. 1992;227:103–12.

    CAS  Google Scholar 

  71. Ek KL, Wang S, Brand-Miller J, Copeland L. Properties of starch from potatoes differing in glycemic index. Food Funct. 2014;5:2509–15.

    Google Scholar 

  72. Defloor I, Dehing I, Delcour JA. Physico-chemical properties of cassava starch. Starch-Stärke. 1998;50:58–64.

    CAS  Google Scholar 

  73. Sriroth K, Santisopasri V, Petchalanuwat C, Kurotjanawong K, Piyachomkwan K, Oates CG. Cassava starch granule structure-function properties: Influence of time and conditions at harvest on four cultivars of cassava starch. Carbohydr Polym. 1999;38:161–70.

    CAS  Google Scholar 

  74. Jane J-L, Wong K-S, McPherson AE. Branch-structure difference in starches of A- and B-type X-ray patterns revealed by their Naegeli dextrins. Carbohydr Res. 1997;300:219–27.

    CAS  Google Scholar 

  75. Hillocks RJ, Thresh JM, Bellotti A, editors. Cassava: Biology, Production and Utilization. New York: CABI Publish Press; 2002.

    Google Scholar 

  76. Alves AAC. Cassava botany and physiology. In: Hillocks RJ, Thresh JM, Bellotti AC, editors. Cassava Biology Production and Utilization. New York: CABI Publish Press; 2002. p. 67–89.

    Google Scholar 

  77. Olomo V, Ajibola O. Processing factors affecting the yield and physicochemical properties of starch from cassava chips and flour. Starch-Stärke. 2010;55:476–81.

    Google Scholar 

  78. Sánchez T, Salcedo E, Ceballos H, Dufour D, Mafla G, Morante N, et al. Screening of starch quality traits in cassava (Manihot esculenta Crantz). Starch-Stärke. 2010;61:12–9.

    Google Scholar 

  79. Rolland-Sabaté A, Sanchez T, Buléon A, Colonna P, Ceballos H, Zhao SS, et al. Molecular and supra-molecular structure of waxy starches developed from cassava (Manihot esculenta Crantz). Carbohydr Polym. 2013;92:1451–62.

    PubMed  Google Scholar 

  80. Moorthy SN, Wenham JE, Jmv B. Effect of solvent extraction on the gelatinisation properties of flour and starch of five cassava varieties. J Sci Food Agric. 2015;72:329–36.

    Google Scholar 

  81. Lesław J, Fortuna T, Krok F. Non-contact atomic force microscopy of starch granules surface. Part I. Potato and tapioca starches. Starch-Stärke. 2003;55:1–7.

    Google Scholar 

  82. Charles AL, Chang YH, Ko WC, Sriroth K, Huang TC. Influence of amylopectin structure and amylose content on the gelling properties of five cultivars of cassava starches. J Agric Food Chem. 2005;53:2717–25.

    CAS  PubMed  Google Scholar 

  83. Charoenkul N, Uttapap D, Pathipanawat W, Takeda Y. Molecular structure of starches from cassava varieties having different cooked root textures. Starch-Stärke. 2010;58:443–52.

    Google Scholar 

  84. Rollandsabaté A, Sánchez T, Buléon A, Colonna P, Jaillais B, Ceballos H, et al. Structural characterization of novel cassava starches with low and high-amylose contents in comparison with other commercial sources. Food Hydrocolloids. 2012;27:161–74.

    Google Scholar 

  85. Charoenkul N, Uttapap D, Pathipanawat W, Takeda Y. Physicochemical characteristics of starches and flours from cassava varieties having different cooked root textures. LWT-Food Sci Technol. 2011;44:1774–81.

    CAS  Google Scholar 

  86. Moorthy SN. Tropical sources of starch. In: Eliassion AC, editor. Starch in Food: Structure, Function and Applications. New York: Woodhead Press; 2004. p. 321–59.

    Google Scholar 

  87. Zhu F. Isolation, composition, structure, properties, modifications, and uses of yam starch. Compr Rev Food Sci Food Saf. 2015;14:357–86.

    CAS  Google Scholar 

  88. Otegbayo B, Bokanga M, Asiedu R. Physicochemical properties of yam starch: Effect on textural quality of yam food product (pounded yam). J Food Agric Environ. 2011;9:145–50.

    CAS  Google Scholar 

  89. Amani N, Buléon A, Kamenan A, Colonna P. Variability in starch physicochemical and functional properties of yam (Dioscorea sp) cultivated in Ivory Coast. J Sci Food Agric. 2004;84:2085–96.

    CAS  Google Scholar 

  90. Pérez E, Gibert O, Rolland-Sabaté A, Jiménez Y, Sánchez T, Giraldo A, et al. Physicochemical, functional, and macromolecular properties of waxy yam starches discovered from “Mapuey” (Dioscorea trifida) genotypes in the Venezuelan Amazon. J Agric Food Chem. 2011;59:263–73.

    PubMed  Google Scholar 

  91. Rolland-Sabaté A, Georges Amani NG, Dufour D, Guilois S, Colonna P. Macromolecular characteristics of ten yam (Dioscorea spp.) starches. J Sci Food Agric. 2003;83:927–36.

    Google Scholar 

  92. Otegbayo B, Oguniyan D, Akinwumi O. Physicochemical and functional characterization of yam starch for potential industrial applications. Starch-Stärke. 2014;66:235–50.

    CAS  Google Scholar 

  93. Zhou Q, Shi W, Meng X, Liu Y. Studies on the morphological, crystalline, thermal properties of an under utilized starch from yam Dioscoreae zingiberensis CH Wright. Starch-Stärke. 2013;65:123–33.

    CAS  Google Scholar 

  94. Jayakody L, Hoover R, Liu Q, Donner E. Studies on tuber starches. II. Molecular structure, composition and physicochemical properties of yam (Dioscorea sp.) starches grown in Sri Lanka. Carbohydr Polym. 2007;69:148–63.

    CAS  Google Scholar 

  95. Takeda Y, Tokunaga N, Takeda C, Hizukuri S. Physicochemical properties of sweet potato starches. Starch-Stärke. 1986;38:345–50.

    CAS  Google Scholar 

  96. Moorthy SN. Physicochemical and functional properties of tropical tuber starches: A review. Starch-Stärke. 2015;54:559–92.

    Google Scholar 

  97. Zhu F, Yang X, Cai YZ, Bertoft E, Corke H. Physicochemical properties of sweetpotato starch. Starch-Stärke. 2011;63:249–59.

    CAS  Google Scholar 

  98. Tharanathan RN, Mahadevamma S. Grain legumes-a boon to human nutrition. Trends Food Sci Technol. 2003;14:507–18.

    CAS  Google Scholar 

  99. Hoover R, Ratnayake WS. Starch characteristics of black bean, chick pea, lentil, navy bean and pinto bean cultivars grown in Canada. Food Chem. 2002;78:489–98.

    CAS  Google Scholar 

  100. Chung HJ, Liu Q, Donner E, Hoover R, Warkentin TD, Vandenberg B. Composition, molecular structure, properties, and in vitro digestibility of starches from newly released Canadian pulse cultivars. Cereal Chem. 2008;85:471–9.

    CAS  Google Scholar 

  101. Stevenson DG, Doorenbos RK, Jane JL, Inglett GE. Structures and functional properties of starch from seeds of three soybean (Glycine max (L.) Merr.) varieties. Starch-Stärke. 2006;58:509–19.

    CAS  Google Scholar 

  102. Wani IA, Sogi DS, Hamdani AM, Gani A, Bhat NA, Shah A. Isolation, composition, and physicochemical properties of starch from legumes: A review. Starch-Stärke. 2016;68:834–45.

    CAS  Google Scholar 

  103. Ambigaipalan P, Hoover R, Donner E, Liu Q, Jaiswal S, Chibbar R, et al. Structure of faba bean, black bean and pinto bean starches at different levels of granule organization and their physicochemical properties. Food Res Int. 2011;44:2962–74.

    CAS  Google Scholar 

  104. Ratnayake WS, Hoover R, Shahidi F, Perera C, Jane J. Composition, molecular structure, and physicochemical properties of starches from four field pea (Pisum sativum L.) cultivars. Food Chem. 2001;74:189–202.

    CAS  Google Scholar 

  105. Sarko A, Wu HH. The crystal structures of A-, B- and C-polymorphs of amylose and starch. Starch-Stärke. 1978;30:73–8.

    CAS  Google Scholar 

  106. Wang S, Yu J, Zhu Q, Yu J, Jin F. Granular structure and allomorph position in C-type Chinese yam starch granule revealed by SEM, 13C CP/MAS NMR and XRD. Food Hydrocolloids. 2009;23:426–33.

    Google Scholar 

  107. Bogracheva TY, Cairns P, Noel TR, Hulleman S, Wang TL, Morris VJ, et al. The effect of mutant genes at the r, rb, rug3, rug4, rug5 and lam loci on the granular structure and physico-chemical properties of pea seed starch. Carbohydr Polym. 1999;39:303–14.

    CAS  Google Scholar 

  108. Hedley CL, Bogracheva TY, Wang TL. A genetic approach to studying the morphology, structure and function of starch granules using pea as a model. Starch-Stärke. 2015;54:235–42.

    Google Scholar 

  109. Schaffer AA, Levin I, Oguz I, Petreikov M, Bar M. ADPglucose pyrophosphorylase activity and starch accumulation in immature tomato fruit: The effect of a Lycopersicon hirsutum-derived introgression encoding for the large subunit. Plant Sci. 2000;152:135–44.

    CAS  Google Scholar 

  110. Stevenson DG, Yoo SH, Hurst PL, Jane JL. Structural and physicochemical characteristics of winter squash (Cucurbita maxima D.) fruit starches at harvest. Carbohydr Polym. 2005;59:153–63.

    CAS  Google Scholar 

  111. Brampton T, Asquith M, Parke B, Barraclough AJ, Hughes WA. Localisation of starch granules in developing tomato fruit. Acta Hortic. 1994:415–8.

    Google Scholar 

  112. Schaffer AA, Petreikov M. Sucrose-to-starch metabolism in tomato fruit undergoing transient starch accumulation. Plant Physiol. 1997;113:739–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Luengwilai K, Beckles DM. Structural investigations and morphology of tomato fruit starch. J Agric Food Chem. 2008;57:282–91.

    Google Scholar 

  114. Warrington IJ, Fulton TA, Halligan EA, De Silva HN. Apple fruit growth and maturity are affected by early season temperature. J Am Soc Hortic Sci. 1999;124:468–77.

    Google Scholar 

  115. Brookfield P, Murphy P, Harker R, Macrae E. Starch degradation and starch pattern indices; interpretation and relationship to maturity. Postharvest Biol Technol. 1997;11:23–30.

    CAS  Google Scholar 

  116. Carrín ME, Ceci LN, Lozano JE. Characterization of starch in apple juice and its degradation by amylases. Food Chem. 2004;87:173–8.

    Google Scholar 

  117. Stevenson DG, Domoto PA, Jane J-L. Structures and functional properties of apple (Malus domestica Borkh) fruit starch. Carbohydr Polym. 2006;63:432–41.

    CAS  Google Scholar 

  118. Kumar PS, Saravanan A, Sheeba N, Uma S. Structural, functional characterization and physicochemical properties of green banana flour from dessert and plantain bananas (Musa spp.). LWT-Food Sci Technology. 2019;116:108524.

    CAS  Google Scholar 

  119. Zhang P, Hamaker BR. Banana starch structure and digestibility. Carbohydr Polym. 2012;87:1552–8.

    CAS  Google Scholar 

  120. Cummings JH, Englyst HN. Measurement of starch fermentation in the human large intestine. Can J Physiol Pharmacol. 1991;69:121–9.

    CAS  PubMed  Google Scholar 

  121. Eggleston G, Swennen R, Akoni S. Physicochemical studies on starches isolated from plantain cultivars, plantain hybrids and cooking bananas. Starch-Stärke. 1992;44:121–8.

    CAS  Google Scholar 

  122. Waliszewski KN, Aparicio MA, Bello LA, Monroy JA. Changes of banana starch by chemical and physical modification. Carbohydr Polym. 2003;52:237–42.

    CAS  Google Scholar 

  123. Gao W, Fan L, Paek K-Y. Ultrastructure of amyloplasts and intercellular transport of old and new scales in Fritillaria ussuriensis. J Plant Biol. 1999;42:117–23.

    Google Scholar 

  124. Li X, Gao W, Jiang Q, Hao J, Guo X, Huang L. Physicochemical, morphological, structural, and thermal characteristics of starches separated from Bulbus fritillaria of different cultivars. Starch-Stärke. 2012;64:572–80.

    CAS  Google Scholar 

  125. Wang S, Yu J, Gao W, Liu H, Xiao P. New starches from traditional Chinese medicine (TCM)-Chinese yam (Dioscorea opposita Thunb.) cultivars. Carbohydr Res. 2006;341:289–93.

    CAS  Google Scholar 

  126. Wang S, Liu H, Gao W, Chen H, Yu J, Xiao P. Characterization of new starches separated from different Chinese yam (Dioscorea opposita Thunb.) cultivars. Food Chem. 2006;99:30–7.

    CAS  Google Scholar 

  127. Wang S, Gao W, Liu H, Chen H, Yu J, Xiao P. Studies on the physicochemical, morphological, thermal and crystalline properties of starches separated from different Dioscorea opposita cultivars. Food Chem. 2006;99:38–44.

    CAS  Google Scholar 

  128. Wang S, Yu J, Yu J, Liu H. The partial characterization of C-type rhizome Dioscorea starch granule during acid hydrolysis. Food Hydrocolloids. 2008;22:531–7.

    CAS  Google Scholar 

  129. Wang S, Yu J, Liu H, Chen W. Characterisation and preliminary lipid-lowering evaluation of starch from Chinese yam. Food Chem. 2008;108:176–81.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (31871796) and Natural Science Foundation of Tianjin City (17JCJQJC45600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, S., Guo, P. (2020). Botanical Sources of Starch. In: Wang, S. (eds) Starch Structure, Functionality and Application in Foods. Springer, Singapore. https://doi.org/10.1007/978-981-15-0622-2_2

Download citation

Publish with us

Policies and ethics