Skip to main content

Autophagy in Plant Immunity

  • Chapter
  • First Online:
Autophagy Regulation of Innate Immunity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1209))

Abstract

The highly conserved catabolic process of autophagy delivers unwanted proteins or damaged organelles to vacuoles for degradation and recycling. This is essential for the regulation of cellular homeostasis, stress adaptation, and programmed cell death in eukaryotes. In particular, emerging evidence indicates that autophagy plays a multifunctional regulatory role in plant innate immunity during plant–pathogen interactions. In this review, we highlight existing knowledge regarding the involvement of autophagy in plant immunity, mechanisms functioning in the induction of autophagy upon pathogen infection, and possible directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avin-Wittenberg T (2019) Autophagy and its role in plant abiotic stress management. Plant Cell Environ 42:1045–1053

    Article  CAS  PubMed  Google Scholar 

  2. Batoko H, Dagdas Y, Baluska F, Sirko A (2017) Understanding and exploiting autophagy signaling in plants. Essays Biochem 61:675–685

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cheng X, Wang A (2017) The Potyvirus silencing suppressor protein VPg mediates degradation of SGS3 via ubiquitination and autophagy pathways. J Virol 91:e01478-16

    Article  PubMed  Google Scholar 

  4. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  CAS  PubMed  Google Scholar 

  5. Coll NS, Epple P, Dangl JL (2011) Programmed cell death in the plant immune system. Cell Death Differ 18:1247–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Coll NS, Smidler A, Puigvert M, Popa C, Valls M, Dangl JL (2014) The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: functional linkage with autophagy. Cell Death Differ 21:1399–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Couto D, Zipfel C (2016) Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol 16:537–552

    Article  CAS  PubMed  Google Scholar 

  8. Csorba T, Pantaleo V, Burgyan J (2009) RNA silencing: an antiviral mechanism. Adv Virus Res 75. https://doi.org/10.1016/S0065-3527(09)07502-2

    Google Scholar 

  9. Cui H, Tsuda K, Parker JE (2015) Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol 66:487–511

    Article  CAS  PubMed  Google Scholar 

  10. Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, Tabassum N, Cruz-Mireles N, Hughes RK, Sklenar J (2016). An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife 5:e10856

    Google Scholar 

  11. Derrien B, Baumberger N, Schepetilnikov M, Viotti C, De Cillia J, Ziegler-Graff V, Isono E, Schumacher K, Genschik P (2012) Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway. Proc Natl Acad Sci USA 109:15942–15946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dodds PN, Lagudah ES (2016) Starving the enemy. Science 354:1377–1378

    Article  CAS  PubMed  Google Scholar 

  14. Dong X, Levine B (2013) Autophagy and viruses: adversaries or allies? J Innate Immun 5:480–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Estrada-Navarrete G, Cruz-Mireles N, Lascano R, Alvarado-Affantranger X, Hernandez-Barrera A, Barraza A, Olivares JE, Arthikala MK, Cardenas L, Quinto C et al (2016) An autophagy-related kinase is essential for the symbiotic relationship between phaseolus vulgaris and both Rhizobia and Arbuscular mycorrhizal fungi. Plant Cell 28:2326–2341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:839–863

    Article  CAS  PubMed  Google Scholar 

  17. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  18. Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol 6:201–211

    Article  CAS  PubMed  Google Scholar 

  19. Hackenberg T, Juul T, Auzina A, Gwizdz S, Malolepszy A, Van Der Kelen K, Dam S, Bressendorff S, Lorentzen A, Roepstorff P et al (2013) Catalase and NO CATALASE ACTIVITY1 promote autophagy-dependent cell death in Arabidopsis. Plant Cell 25:4616–4626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hafrén A, Macia J-L, Love AJ, Milner JJ, Drucker M, Hofius D (2017) Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles. Proc Natl Acad Sci USA 114:E2026–E2035

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Han S, Wang Y, Zheng X, Jia Q, Zhao J, Bai F, Hong Y, Liu Y (2015) Cytoplastic Glyceraldehyde-3-Phosphate Dehydrogenases interact with ATG3 to negatively regulate autophagy and immunity in Nicotiana benthamiana. Plant Cell 27:1316–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Han S, Yu B, Wang Y, Liu Y (2011) Role of plant autophagy in stress response. Protein Cell 2:784–791

    Article  PubMed  PubMed Central  Google Scholar 

  23. Haxim Y, Ismayil A, Jia Q, Wang Y, Zheng X, Chen T, Qian L, Liu N, Wang Y, Han S et al (2017) Autophagy functions as an antiviral mechanism against geminiviruses in plants. eLife 6:e23897

    Google Scholar 

  24. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hof A, Zechmann B, Schwammbach D, Hückelhoven R, Doehlemann G (2014) Alternative cell death mechanisms determine epidermal resistance in incompatible Barley-Ustilago interactions. Mol Plant Microbe Interact 27:403–414

    Article  CAS  PubMed  Google Scholar 

  26. Hofius D, Li L, Hafren A, Coll NS (2017) Autophagy as an emerging arena for plant-pathogen interactions. Curr Opin Plant Biol 38:117–123

    Article  CAS  PubMed  Google Scholar 

  27. Hofius D, Munch D, Bressendorff S, Mundy J, Petersen M (2011) Role of autophagy in disease resistance and hypersensitive response-associated cell death. Cell Death Differ 18:1257–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis DI, Petersen NH, Mattsson O, Jorgensen LB, Jones JD, Mundy J, Petersen M (2009) Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 137:773–783

    Article  CAS  PubMed  Google Scholar 

  29. Huang S, Chen X, Zhong X, Li M, Ao K, Huang J, Li X (2016) Plant TRAF proteins regulate NLR immune receptor turnover. Cell Host Microbe 19:204–215

    Article  CAS  PubMed  Google Scholar 

  30. Izumi M, Ishida H, Nakamura S, Hidema J (2017) Entire photodamaged chloroplasts are transported to the central vacuole by autophagy. Plant Cell 29:377–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  32. Katsiarimpa A, Kalinowska K, Anzenberger F, Weis C, Ostertag M, Tsutsumi C, Schwechheimer C, Brunner F, Hückelhoven R, Isono E (2013) The deubiquitinating enzyme AMSH1 and the ESCRT-III subunit VPS2.1 are required for autophagic degradation in Arabidopsis. Plant Cell 25:2236–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Knodler LA, Celli J (2011) Eating the strangers within: host control of intracellular bacteria via xenophagy. Cell Microbiol 13:1319–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kourtis N, Tavernarakis N (2008) Autophagy and cell death in model organisms. Cell Death Differ 16:21–30

    Article  PubMed  CAS  Google Scholar 

  35. Kwon SI, Cho HJ, Kim SR, Park OK (2013) The Rab GTPase RabG3b positively regulates autophagy and immunity-associated hypersensitive cell death in Arabidopsis. Plant Physiol 161:1722–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lai Z, Wang F, Zheng Z, Fan B, Chen Z (2011) A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Plant Journal 66:953–968

    Article  CAS  Google Scholar 

  37. Leary AY, Sanguankiattichai N, Duggan C, Tumtas Y, Pandey P, Segretin ME, Salguero Linares J, Savage ZD, Yow RJ, Bozkurt TO (2018) Modulation of plant autophagy during pathogen attack. J Exp Bot 69:1325–1333

    Article  CAS  PubMed  Google Scholar 

  38. Lenz HD, Haller E, Melzer E, Gust AA, Nürnberger T (2011) Autophagy controls plant basal immunity in a pathogenic lifestyle-dependent manner. Autophagy 7:773–774

    Article  PubMed  Google Scholar 

  39. Lenz HD, Haller E, Melzer E, Kober K, Wurster K, Stahl M, Bassham DC, Vierstra RD, Parker JE, Bautor J et al (2011) Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant J 66:818–830

    Article  CAS  PubMed  Google Scholar 

  40. Levine B, Deretic V (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7:767–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li F, Chung T, Vierstra RD (2014) AUTOPHAGY-RELATED11 plays a critical role in general autophagy-and senescence-induced mitophagy in Arabidopsis. Plant Cell 26:788–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li F, Vierstra RD (2012) Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci 17:526–537

    Article  CAS  PubMed  Google Scholar 

  43. Li Y, Kabbage M, Liu W, Dickman MB (2016) Aspartyl protease mediated cleavage of AtBAG6 is necessary for autophagy and fungal resistance in plants. Plant Cell 28:233–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu Y, Schiff M, Czymmek K, Talloczy Z, Levine B, Dinesh-Kumar SP (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121:567–577

    Article  CAS  PubMed  Google Scholar 

  45. Marshall RS, Hua Z, Mali S, McLoughlin F, Vierstra RD (2019) ATG8-binding UIM proteins define a new class of autophagy adaptors and receptors. Cell 177(766–781):e724

    Google Scholar 

  46. Marshall RS, Li F, Gemperline DC, Book AJ, Vierstra RD (2015) Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/Ubiquitin receptor RPN10 in Arabidopsis. Mol Cell 58:1053–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marshall RS, Vierstra RD (2018) Autophagy: the master of bulk and selective recycling. Annu Rev Plant Biol 69:173–208

    Article  CAS  PubMed  Google Scholar 

  48. Martelli GP, Russo M (1973) Electron microscopy of artichoke mottled crinkle virus in leaves of Chenopodium quinoa Willd. J Ultrastruct Res 42:93–107

    Article  CAS  PubMed  Google Scholar 

  49. Mendgen K, Hahn M (2002) Plant infection and the establishment of fungal biotrophy. Trends Plant Sci 7:352–356

    Article  CAS  PubMed  Google Scholar 

  50. Mengiste T (2012) Plant immunity to necrotrophs. Annu Rev Phytopathol 50:267–294

    Article  CAS  PubMed  Google Scholar 

  51. Minina EA, Bozhkov PV, Hofius D (2014) Autophagy as initiator or executioner of cell death. Trends Plant Sci 19:692–697

    Article  CAS  PubMed  Google Scholar 

  52. Minina EA, Moschou PN, Vetukuri RR, Sanchez-Vera V, Cardoso C, Liu Q, Elander PH, Dalman K, Beganovic M, Lindberg Yilmaz J et al (2018) Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness. J Exp Bot 69:1415–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mukhtar MS, McCormack ME, Argueso CT, Pajerowska-Mukhtar KM (2016) Pathogen tactics to manipulate plant cell death. Curr Biol 26:R608–R619

    Article  CAS  PubMed  Google Scholar 

  54. Munch D, Rodriguez E, Bressendorff S, Park OK, Hofius D, Petersen M (2014) Autophagy deficiency leads to accumulation of ubiquitinated proteins, ER stress, and cell death in Arabidopsis. Autophagy 10:1579–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nakahara KS, Masuta C, Yamada S, Shimura H, Kashihara Y, Wada TS, Meguro A, Goto K, Tadamura K, Sueda K et al (2012) Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors. Proc Natl Acad Sci USA 109:10113–10118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nelson C, Baehrecke EH (2014) Eaten to death. FEBS J 281:5411–5417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ohsumi Y (2013) Historical landmarks of autophagy research. Cell Res 24:9–23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Orvedahl A, Levine B (2008) Eating the enemy within: autophagy in infectious diseases. Cell Death Differ 16:57–69

    Article  PubMed  CAS  Google Scholar 

  59. Pajerowska-Mukhtar KM, Emerine DK, Mukhtar MS (2013) Tell me more: roles of NPRs in plant immunity. Trends Plant Sci 18:402–411

    Article  CAS  PubMed  Google Scholar 

  60. Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20:460–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Patel S, Dinesh-Kumar SP (2008) Arabidopsis ATG6 is required to limit the pathogen-associated cell death response. Autophagy 4:20–27

    Article  CAS  PubMed  Google Scholar 

  62. Patel S, Dinesh-Kumar SP (2014) Arabidopsis ATG6 is required to limit the pathogen-associated cell death response. Autophagy 4:20–27

    Article  Google Scholar 

  63. Pecenkova T, Sabol P, Kulich I, Ortmannova J, Zarsky V (2016) Constitutive negative regulation of R proteins in Arabidopsis also via autophagy related pathway? Front Plant Sci 7:260

    Google Scholar 

  64. Popa C, Li L, Gil S, Tatjer L, Hashii K, Tabuchi M, Coll NS, Arino J, Valls M (2016) The effector AWR5 from the plant pathogen Ralstonia solanacearum is an inhibitor of the TOR signalling pathway. Sci Rep 6:27058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Qi H, Xia FN, Xie LJ, Yu LJ, Chen QF, Zhuang XH, Wang Q, Li F, Jiang L, Xie Q et al (2017) TRAF family proteins regulate autophagy dynamics by modulating AUTOPHAGY PROTEIN6 stability in Arabidopsis. Plant Cell 29:890–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510

    Article  CAS  PubMed  Google Scholar 

  67. S̆Arić A, Wrischer M (1975) Fine structure changes in different host plants induced by Grapevine Fanleaf Virus. J Phytopathol 84:97–104

    Article  Google Scholar 

  68. Seyfferth C, Tsuda K (2014) Salicylic acid signal transduction: the initiation of biosynthesis, perception and transcriptional reprogramming. Front Plant Sci 5:697

    Article  PubMed  PubMed Central  Google Scholar 

  69. Shibata M, Oikawa K, Yoshimoto K, Kondo M, Mano S, Yamada K, Hayashi M, Sakamoto W, Ohsumi Y, Nishimura M (2013) Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis. Plant Cell 25:4967–4983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shibutani ST, Saitoh T, Nowag H, Münz C, Yoshimori T (2015) Autophagy and autophagy-related proteins in the immune system. Nat Immunol 16:1014–1024

    Article  CAS  PubMed  Google Scholar 

  71. Sridhar S, Botbol Y, Macian F, Cuervo AM (2012) Autophagy and disease: always two sides to a problem. J Pathology 226:255–273

    Article  Google Scholar 

  72. Stael S, Kmiecik P, Willems P, Van Der Kelen K, Coll NS, Teige M, Van Breusegem F (2015) Plant innate immunity–sunny side up? Trends Plant Sci 20:3–11

    Article  CAS  PubMed  Google Scholar 

  73. Tyler B, Kabbage M, Williams B, Dickman MB (2013) Cell death control: the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum. PLoS Pathog 9:e1003287

    Article  CAS  Google Scholar 

  74. Ustun S, Hafren A, Hofius D (2017) Autophagy as a mediator of life and death in plants. Curr Opin Plant Biol 40:122–130

    Article  CAS  PubMed  Google Scholar 

  75. Ustun S, Hafren A, Liu Q, Marshall RS, Minina EA, Bozhkov PV, Vierstra RD, Hofius D (2018) Bacteria exploit autophagy for proteasome degradation and enhanced virulence in plants. Plant Cell 30:668–685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. van Doorn WG, Beers EP, Dangl JL, Franklin-Tong VE, Gallois P, Hara-Nishimura I, Jones AM, Kawai-Yamada M, Lam E, Mundy J et al (2011) Morphological classification of plant cell deaths. Cell Death Differ 18:1241–1246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. van Kan JA (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253

    Article  PubMed  CAS  Google Scholar 

  78. Veloso J, van Kan JAL (2018) Many shades of grey in Botrytis-host plant interactions. Trends Plant Sci 23:613–622

    Article  CAS  PubMed  Google Scholar 

  79. Wang Y, Nishimura MT, Zhao T, Tang D (2011) ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant Journal 68:74–87

    Article  CAS  Google Scholar 

  80. Williams B, Kabbage M, Kim HJ, Britt R, Dickman MB (2011) Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog 7:e1002107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xiong Y, Contento AL, Nguyen PQ, Bassham DC (2007) Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol 143:291–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xu G, Wang S, Han S, Xie K, Wang Y, Li J, Liu Y (2017) Plant Bax Inhibitor-1 interacts with ATG6 to regulate autophagy and programmed cell death. Autophagy 13:1161–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yan Y, Wang P, He C, Shi H (2017) MeWRKY20 and its interacting and activating autophagy-related protein 8 (MeATG8) regulate plant disease resistance in cassava. Biochem Biophys Res Commun 494:20–26

    Article  CAS  PubMed  Google Scholar 

  84. Yang F, Kimberlin AN, Elowsky CG, Liu Y, Gonzalez-Solis A, Cahoon EB, Alfano JR (2019) A plant immune receptor degraded by selective autophagy. Mol Plant 12:113–123

    Article  CAS  PubMed  Google Scholar 

  85. Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K (2009) Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21:2914–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yue J, Sun H, Zhang W, Pei D, He Y, Wang H (2015) Wheat homologs of yeast ATG6 function in autophagy and are implicated in powdery mildew immunity. BMC Plant Biology 15

    Google Scholar 

  87. Zheng P, Wu JX, Sahu SK, Zeng HY, Huang LQ, Liu Z, Xiao S, Yao N (2018) Loss of alkaline ceramidase inhibits autophagy in Arabidopsis and plays an important role during environmental stress response. Plant Cell Env 41:837–849

    Article  CAS  Google Scholar 

  88. Zhou J, Yu J-Q, Chen Z (2014) The perplexing role of autophagy in plant innate immune responses. Molecular Plant Pathology 15:637–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zipfel C (2014) Plant pattern-recognition receptors. Trends Immunol 35:345–351

    Article  CAS  PubMed  Google Scholar 

  90. Zvereva AS, Golyaev V, Turco S, Gubaeva EG, Rajeswaran R, Schepetilnikov MV, Srour O, Ryabova LA, Boller T, Pooggin MM (2016) Viral protein suppresses oxidative burst and salicylic acid-dependent autophagy and facilitates bacterial growth on virus-infected plants. New Phytol 211:1020–1034

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31771357), the Natural Science Foundation of Guangdong Province (2017A030311005), and the Fundamental Research Funds for the Central Universities (18lgpy51).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zeng, HY., Zheng, P., Wang, LY., Bao, HN., Sahu, S.K., Yao, N. (2019). Autophagy in Plant Immunity. In: Cui, J. (eds) Autophagy Regulation of Innate Immunity. Advances in Experimental Medicine and Biology, vol 1209. Springer, Singapore. https://doi.org/10.1007/978-981-15-0606-2_3

Download citation

Publish with us

Policies and ethics