Skip to main content

AMPK and Autophagy

  • Chapter
  • First Online:
Autophagy: Biology and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1206))

Abstract

AMPK is an evolutionarily conserved serine/threonine-protein kinase that acts as an energy sensor in cells and plays a key role in the upregulation of catabolism and inactivation of anabolism. Under various physiological and pathological conditions, AMPK can be phosphorylated by an upstream kinase and bind to AMP or ADP rather than ATP, leading to its activation. Activated AMPK regulates a variety of metabolic processes, including autophagy. AMPK promotes autophagy directly by phosphorylating autophagy-related proteins in the mTORC1, ULK1, and PIK3C3/VPS34 complexes or indirectly by regulating the expression of autophagy-related genes downstream of transcription factors such as FOXO3, TFEB, and BRD4. AMPK can also upregulate the autophagic degradation of mitochondria (mitophagy), as it can induce fragmentation of damaged mitochondria in the network and promote the translocation of the autophagy machinery to damaged mitochondria. In this section, we will detail the molecular structure of AMPK, how its activity is regulated, and its pivotal role in regulating autophagy and mitophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACC:

Acetyl-CoA carboxylase

ACSS2:

Acetyl-CoA synthetase 2

ADaM:

Allosteric drug and metabolite

ADP:

Adenosine diphosphate

AICAR:

5-aminoimidazole-4-carboxamide riboside

AMP:

Adenosine monophosphate

AMPK:

AMP-activated protein kinase

ATP:

Adenosine triphosphate

ATG:

Autophagy-related gene

BMDM:

Bone marrow-derived macrophages

BRD4:

Bromodomain-containing protein 4

CAMKK2:

Calmodulin-dependent protein kinases kinase 2

CARM1:

Coactivator-associated arginine (R) methyltransferase 1

CBD:

Carbohydrate-binding domain

CBS:

Cystathionine β-synthase

CHOP:

C/EBP homologous protein

CCCP:

Carbonyl cyanide 3-chlorophenylhydrazone

DDIT3:

DNA damage-inducible transcript 3

DRP1:

Dynamin-related protein 1

FAS:

Fatty acid synthase

FOXK:

Forkhead box protein K

FOXO3:

Forkhead box O3

FUNDC1:

FUN14 domain-containing protein 1

GAP:

GTPase-activating protein

GBD:

Glycogen-binding domain

GDP:

Guanine dinucleotide phosphate

GLUT4:

Glucose Transporter 4

GPAT:

Glycerol phosphate acyltransferase

GSK3β:

Glycogen synthase kinase 3 beta

GTP:

Guanine trinucleotide phosphate

HSF1:

Heat shock factor 1

IGF-1:

Insulin-like growth factor 1

LKB1:

Liver kinase B1

MAPKK:

Mitogen-activated protein kinase kinase

MEF:

Mouse embryonic fibroblasts

MFF:

Mitochondrial fission factor

MO25:

Mouse protein 25

mtDNA:

Mitochondrial DNA

mTOR:

Mammalian target of rapamycin

NBS:

Nucleotide-binding site

NES:

Nuclear export sequence

NMT1:

N-myristoyl transferase 1

NRF2:

Nuclear factor erythroid 2-related factor 2

PAQR3:

Progestin and adipo-Q receptor 3

PGC1α:

PPARγ coactivator 1α

PI3P:

Phosphatidylinositol 3-phosphate

PIK3C3:

Phosphatidylinositol 3-kinase catalytic subunit 3

PIK3R4:

Phosphoinositide 3-kinase regulatory subunit 4

PINKl:

PTEN induced kinase 1

PKA:

Protein kinase A

PKB:

Protein kinase B

PKC:

Protein kinase C

PKD:

Protein kinase D

PP2A:

Protein phosphatase 2A

PPARγ:

Peroxisome proliferator-activated receptor γ

PPM1E:

Protein Phosphatase, Mg2+/Mn2+-Dependent 1E

PRKAA:

AMP-activated protein kinase catalytic subunit alpha

PRKAB:

AMP-activated protein kinase subunit beta

PRKAG:

AMP-activated protein kinase subunit gamma

RACK1:

Receptor for activated C kinase 1

RB1CC1:

RB1-inducible coiled-coil 1

RHEB:

Ras Homolog Enriched in Brain

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SKP2:

S-phase kinase-associated protein 2

STK11:

Serine/Threonine kinase 11

STRAD:

Ste20-related adaptor protein

TAK1:

Transforming growth factor-β-activating kinase 1

TCA:

Tricarboxylic acid cycle

TFEB:

Transcription Factor EB

TNFSF10:

TNF superfamily member 10

TRAIL:

TNF-related apoptosis inducing ligand

TSC:

Tuberous sclerosis complex

TZD:

Thiazolidinediones,

ULK1:

Unc-51-like kinase 1

UVRAG:

Ultraviolet radiation resistance‑associated gene protein

References

  • Bowman CJ, Ayer DE, Dynlacht BD (2014) Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs. Nat Cell Biol 16:1202–1214

    Article  CAS  Google Scholar 

  • Cameron KO, Kung DW, Kalgutkar AS et al (2016) Discovery and Preclinical Characterization of 6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic Acid (PF-06409577), a Direct Activator of Adenosine Monophosphate-activated Protein Kinase (AMPK), for the Potential Treatment of Diabetic Nephropathy. J Med Chem 59(17):8068–8081

    Article  CAS  Google Scholar 

  • Dasgupta B, Seibel W (2018) Compound C/Dorsomorphin: Its Use and Misuse as an AMPK Inhibitor. Methods Mol Biol 1732:195–202

    Article  CAS  Google Scholar 

  • Dite TA, Langendorf CG, Hoque A et al (2018) AMP-activated protein kinase selectively inhibited by the type II inhibitor SBI-0206965. J Biol Chem 293(23):8874–8885

    Article  CAS  Google Scholar 

  • Dunlop EA, Hunt DK, Acosta-Jaquez HA et al (2011) ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding. Autophagy 7(7):737–747

    Article  CAS  Google Scholar 

  • Dunlop EA, Tee AR (2013) The kinase triad, AMPK, mTORC1 and ULK1, maintains energy and nutrient homoeostasis. Biochem Soc Trans 41(4):939–943

    Article  CAS  Google Scholar 

  • Egan DF, Shackelford DB, Mihaylova MM et al (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331:456–461

    Article  CAS  Google Scholar 

  • Foretz M, Guigas B, Bertmnd L et al (2014) Metfomin:from mechanisms of action to therapies. Cell Metab 20(6):953–966

    Article  CAS  Google Scholar 

  • Hardie DG (2014) AMPK-sensing energy while talking to other signaling pathways. Cell Metab 20:939–952

    Article  CAS  Google Scholar 

  • Hardie DG, Schaffer BE, Brunet A (2016) AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol 26:190–201

    Article  CAS  Google Scholar 

  • Joseph BK, Liu HY, Francisco J et al (2015) Inhibition of AMP Kinase by the Protein Phosphatase 2A Heterotrimer, PP2APpp2r2d. J Biol Chem 290(17):10588–10598

    Article  CAS  Google Scholar 

  • Kim J, Kim YC, Fang C et al (2013) Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152(1–2):290–303

    Article  CAS  Google Scholar 

  • Li X, Yu W, Qian X et al (2017) Nucleus-Translocated ACSS2 Promotes Gene Transcription for Lysosomal Biogenesis and Autophagy. Mol Cell 66(5):684–697

    Article  CAS  Google Scholar 

  • Liang J, Xu ZX, Ding Z et al (2015) Myristoylation confers noncanonical AMPK functions in autophagy selectivity and mitochondrial surveillance. Nat Commun 6:7926

    Article  CAS  Google Scholar 

  • Löffler AS, Alers S, Dieterle AM et al (2011) Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy 7(7):696–706

    Article  Google Scholar 

  • Martina JA, Chen Y, Gucek M et al (2012) MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8(6):903–914

    Article  CAS  Google Scholar 

  • Neumann D. 2018. Is TAK1 a Direct Upstream Kinase of AMPK? Int J Mol Sci, 19(8). pii: E2412

    Google Scholar 

  • Nguyen TN, Padman BS, Lazarou M (2016) Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol 26:733–744

    Article  CAS  Google Scholar 

  • Puente C, Hendrickson RC, Jiang X (2016) Nutrient-regulated Phosphorylation of ATG13 Inhibits Starvation-induced Autophagy. J Biol Chem 291(11):6026–6035

    Article  CAS  Google Scholar 

  • Sakamaki JI, Wilkinson S, Hahn M et al (2017) Bromodomain Protein BRD4 Is a Transcriptional Repressor of Autophagy and Lysosomal Function. Mol Cell 66(4):517–532

    Article  CAS  Google Scholar 

  • Tamargo-Gómez I, Mariño G. AMPK: Regulation of Metabolic Dynamics in the Context of Autophagy. Int J Mol Sci. 2018, 19(12). pii: E3812

    Google Scholar 

  • Toyama EQ, Herzig S, Courchet J et al (2016) AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351(6270):275–281

    Article  CAS  Google Scholar 

  • Wu W, Tian W, Hu Z et al (2014) ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep 15:566–575

    Article  CAS  Google Scholar 

  • Xiao B, Sanders MJ, Carmena D et al (2013) Structural basis of AMPK regulation by small molecule activators. Nat Commun 4:3017

    Article  Google Scholar 

  • Zhang CS, Jiang B, Li M et al (2014) The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab 20(3):526–540

    Article  CAS  Google Scholar 

  • Zhang YL, Guo H, Zhang CS et al (2013) AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation. Cell Metab 18(4):546–555

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingyu Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y., Chen, Y. (2019). AMPK and Autophagy. In: Qin, ZH. (eds) Autophagy: Biology and Diseases. Advances in Experimental Medicine and Biology, vol 1206. Springer, Singapore. https://doi.org/10.1007/978-981-15-0602-4_4

Download citation

Publish with us

Policies and ethics