Skip to main content

Autophagy and Immune Tolerance

  • Chapter
  • First Online:
Autophagy: Biology and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1206))

Abstract

The immune system plays a critical role in defense against invading pathogens, and its function must be strictly controlled to maintain intracellular homeostasis. Once suffering microbial invasion or receiving danger signals, the immune system initiates the responses timely. After the threat removal, the immune system should be shut down to avoid the harm caused by excessive immune activation. Additionally, the immune system needs to be internally adjusted so that it does not respond to self-antigens to avoid autoimmune diseases. The states of nonresponse in immunity are termed as immune tolerance. Numerous studies indicated that macroautophagy (hereafter named as autophagy) is involved in T cells and B cells related immune tolerance. Recently, more and more researches demonstrated that autophagy is not only capable of nonselective degradation of cellular macromolecular components but also responsible for sorting and transporting autophagic substrates through a group of cargo receptors for selective degradation, which is called as selective autophagy. Recent studies indicated that selective autophagy can effectively regulate the immune tolerance and avoid over-activation of immune response by targeting multiple receptors and effectors of immune cells. In this chapter, we will focus on how autophagy participates explicitly in the adaptive and innate immune tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIM2:

Absent in melanoma 2

AMPK:

Adenine monophosphate activated protein kinase

APC:

Antigen-presenting cell

ASC:

Apoptosis-associated speck-like protein containing a CARD

BMDM:

Bone marrow derived macrophages

caspase:

Cysteinyl aspartate specific proteinase

CCL5:

CC chemokine ligand 5

CD4:

Cluster of differentiation 4

cGAMP:

Cyclic guanosine monophosphate–adenosine monophosphate

cGAS:

Cyclic GMP-AMP synthase

cTEC:

Thymic cortical epithelial cell

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

DAMP:

Danger-associated molecular pattern

DC:

Dendritic cell

DP:

Double-positive cell

EGR:

Early growth response protein

FAO:

Fatty acid oxidation

FAS:

Fatty acid biosynthesis

GSDMD:

Gasdermin D

GWAS:

Genome-wide association study

GZMB:

Granzyme B

HFD:

High-fat diet

HSV-1:

Herpes simplex virus type 1

IFN:

Interferon

IKK:

IκB kinase

IL:

Interleukin

ILC:

Innate lymphoid cell

IRF3:

Interferon regulatory factor 3

ISG15:

Interferon-stimulated gene 15

JAK2:

Janus kinase 2

JIA:

Juvenile idiopathic arthritis

LC3:

Microtubule-associated proteins light chain 3

LPS:

Lipopolysaccharide

LRRC25:

Leucine-rich repeat-containing protein 25

MAVS:

Mitochondrial antiviral-signaling protein

MHC:

Major histocompatibility complex

mTOR:

Mammalian target of rapamycin

MyD88:

Myeloid differentiation primary response 88

NBR1:

Neighbor of BRCA1 gene 1

NDP52:

Nuclear dot protein 52 kDa

NF-κB:

Nuclear factor kappa-B

NK:

Natural killer cell

NLRP3:

NACHT, LRR and PYD domains-containing protein 3

NOD2:

Nucleotide-binding oligomerization domain-containing protein 2

OPTN:

Optineurin

PAI-2:

Plasminogen activator inhibitor type 2

PAMP:

Pathogen-associated molecular pattern

PD1:

Programmed cell death protein 1

PRR:

Pattern recognition receptor

PTPN1:

Non receptor type 1

RIG-I:

Retinoic acid-inducible gene I

ROS:

Reactive oxygen species

SKP2:

S-phase kinase-associated protein 2

STAT1:

Signal transducer and activator of transcription 1

STING:

Stimulator of interferon genes protein

TAK1:

Transforming growth factor activated kinase-1

TBK1:

TANK-binding kinase 1

TCR:

T cell receptor

TGF-β:

Transforming growth factor-β

Th:

Helper T cell

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

Treg:

Regulatory T cell

TRIF:

TIR domain-containing adapter molecule 1

TRIM:

Tripartite motif containing

ULK1:

UNC-51-like kinase 1

VPS34:

Vacuolar protein sorting 34

References

  • Aichinger M, Wu C, Nedjic J, Klein L (2013) Macroautophagy substrates are loaded onto MHC class II of medullary thymic epithelial cells for central tolerance. J Exp Med 210:287–300

    Article  CAS  Google Scholar 

  • Chen M, Hong MJ, Sun H, Wang L, Shi X, Gilbert BE, Corry DB, Kheradmand F, Wang J (2014) Essential role for autophagy in the maintenance of immunological memory against influenza infection. Nat Med 20:503–510

    Article  CAS  Google Scholar 

  • Choi Y, Bowman JW, Jung JU (2018) Autophagy during viral infection—a double-edged sword. Nat Rev Microbiol 16:340–353

    Article  Google Scholar 

  • Deretic V, Kimura T, Timmins G, Moseley P, Chauhan S, Mandell M (2015) Immunologic manifestations of autophagy. J Clin Investig 125:75–84

    Article  Google Scholar 

  • Deretic V, Levine B (2018) Autophagy balances inflammation in innate immunity. Autophagy 14:243–251

    Article  CAS  Google Scholar 

  • Gapin L (2016) Development of invariant natural killer T cells. Curr Opin Immunol 39:68–74

    Article  CAS  Google Scholar 

  • Ghislat G, Lawrence T (2018) Autophagy in dendritic cells. Cell Mol Immunol

    Google Scholar 

  • Hubbard-Lucey VM, Shono Y, Maurer K, West ML, Singer NV, Ziegler CG, Lezcano C, Motta AC, Schmid K, Levi SM, Murphy GF, Liu C, Winkler JD, Amaravadi RK, Rogler G, Dickinson AM, Holler E, van den Brink MR, Cadwell K (2014) Autophagy gene Atg16L1 prevents lethal T cell alloreactivity mediated by dendritic cells. Immunity 41:579–591

    Article  CAS  Google Scholar 

  • Ireland JM, Unanue ER (2011) Autophagy in antigen-presenting cells results in presentation of citrullinated peptides to CD4 T cells. J Exp Med 208:2625–2632

    Article  CAS  Google Scholar 

  • Jin SH, Tian S, Chen YM, Zhang CX, Xie WH, Xia XJ, Cui J, Wang RF (2016) USP19 modulates autophagy and antiviral immune responses by deubiquitinating Beclin-1. EMBO J 35:866–880

    Article  CAS  Google Scholar 

  • Jin SH, Tian S, Luo M, Xie WH, Liu T, Duan TH, Wu YX, Cui J (2017) Tetherin suppresses type I interferon signaling by targeting MAVS for NDP52-mediated selective autophagic degradation in human cells. Mol Cell 68:308–322

    Article  CAS  Google Scholar 

  • Joubert PE, Albert ML (2013) Autophagy during viral infections: a double-edge sword. Virologie 17:331–342

    Google Scholar 

  • Kabat AM, Harrison OJ, Riffelmacher T, Moghaddam AE, Pearson CF, Laing A, Abeler-Dorner L, Forman SP, Grencis RK, Sattentau Q, Simon AK, Pott J, Maloy KJ (2016a) The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. Elife 5:e12444

    Article  Google Scholar 

  • Kabat AM, Pott J, Maloy KJ (2016b) The mucosal immune system and its regulation by autophagy. Front Immunol 7:240

    Article  Google Scholar 

  • Kang C, Xu QK, Martin TD, Li MZ, Demaria M, Aron L, Lu T, Yankner BA, Campisi J, Elledge SJ (2015) The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349:12

    Article  Google Scholar 

  • Lopez-Soto A, Bravo-San Pedro JM, Kroemer G, Galluzzi L, Gonzalez S (2017) Involvement of autophagy in NK cell development and function. Autophagy 13:633–636

    Article  Google Scholar 

  • Maurer K, Torres VJ, Cadwell K (2015) Autophagy is a key tolerance mechanism during Staphylococcus aureus infection. Autophagy 11:1184–1186

    Article  CAS  Google Scholar 

  • Miller BC, Zhao Z, Stephenson LM, Cadwell K, Pua HH, Lee HK, Mizushima NN, Iwasaki A, He YW, Swat W, Virgin HWT (2008) The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 4:309–314

    Article  CAS  Google Scholar 

  • Mocholi E, Dowling SD, Botbol Y, Gruber RC, Ray AK, Vastert S, Shafit-Zagardo B, Coffer PJ, Macian F (2018) Autophagy is a tolerance-avoidance mechanism that modulates TCR-mediated signaling and cell metabolism to prevent induction of T cell anergy. Cell Rep 24:1136–1150

    Article  CAS  Google Scholar 

  • Nedjic J, Aichinger M, Emmerich J, Mizushima N, Klein L (2008) Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455:396–400

    Article  CAS  Google Scholar 

  • Pua HH, Dzhagalov I, Chuck M, Mizushima N, He YW (2007) A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med 204:25–31

    Article  CAS  Google Scholar 

  • Puleston DJ, Zhang H, Powell TJ, Lipina E, Sims S, Panse I, Watson AS, Cerundolo V, Townsend AR, Klenerman P, Simon AK (2014) Autophagy is a critical regulator of memory CD8(+) T cell formation. Elife 3

    Google Scholar 

  • Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M, Tanaka K, Kawai T, Tsujimura T, Takeuchi O, Yoshimori T, Akira S (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456:264–268

    Article  CAS  Google Scholar 

  • Stranks AJ, Hansen AL, Panse I, Mortensen M, Ferguson DJP, Puleston DJ, Shenderov K, Watson AS, Veldhoen M, Phadwal K, Cerundolo V, Simon AK (2015) Autophagy controls acquisition of aging features in macrophages. J Innate Immun 7:375–391

    Article  CAS  Google Scholar 

  • Sukseree S, Mildner M, Rossiter H, Pammer J, Zhang CF, Watanapokasin R, Tschachler E, Eckhart L (2012) Autophagy in the thymic epithelium is dispensable for the development of self-tolerance in a novel mouse model. PLoS ONE 7:e38933

    Article  CAS  Google Scholar 

  • Ushio H, Ueno T, Kojima Y, Komatsu M, Tanaka S, Yamamoto A, Ichimura Y, Ezaki J, Nishida K, Komazawa-Sakon S, Niyonsaba F, Ishii T, Yanagawa T, Kominami E, Ogawa H, Okumura K, Nakano H (2011) Crucial role for autophagy in degranulation of mast cells. J Allergy Clin Immunol. 127:1267–1282

    Article  CAS  Google Scholar 

  • Wei J, Long L, Yang K, Guy C, Shrestha S, Chen Z, Wu C, Vogel P, Neale G, Green DR, Chi H (2016) Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat Immunol 17:277–285

    Article  CAS  Google Scholar 

  • Wenger T, Terawaki S, Camosseto V, Abdelrassoul R, Mies A, Catalan N, Claudio N, Clavarino G, De Gassart A, Rigotti Fde A, Gatti E, Pierre P (2012) Autophagy inhibition promotes defective neosynthesized proteins storage in ALIS, and induces redirection toward proteasome processing and MHCI-restricted presentation. Autophagy 8:350–363

    Article  CAS  Google Scholar 

  • Wu TT, Li WM, Yao YM (2016) Interactions between autophagy and inhibitory cytokines. Int J Biol Sci 12:884–897

    Article  CAS  Google Scholar 

  • Zhong ZY, Sanchez-Lopez E, Karin M (2016) Autophagy, inflammation, and immunity: a troika governing cancer and its treatment. Cell 166:288–298

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, YX., Jin, SH., Cui, J. (2019). Autophagy and Immune Tolerance. In: Qin, ZH. (eds) Autophagy: Biology and Diseases. Advances in Experimental Medicine and Biology, vol 1206. Springer, Singapore. https://doi.org/10.1007/978-981-15-0602-4_28

Download citation

Publish with us

Policies and ethics