Skip to main content

Autophagy, Aging, and Longevity

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1206)

Abstract

Autophagy is a conserved process that degrades intracellular components through lysosomes, thereby maintaining energy homeostasis and renewal of organelles. Mounting evidence indicates that autophagy plays a key role in aging and aging-related diseases. Enhanced autophagy can delay aging and prolong life span. The absence of autophagy leads to the accumulation of mutant and misfolded proteins in the cell, which is the basis for the emergence and development of neurodegenerative diseases and other aging-related diseases. It will be of importance to develop approaches to extend the lifespan and improve the health of elderly individuals through the modulation of autophagy.

Keywords

  • Autophagy
  • Aging
  • Longevity

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-0602-4_24
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-0602-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 24.1

Abbreviations

CMA:

Chaperone-mediated autophagy

FOXO3a:

Forkhead transcription factor

HSP70:

Heat shock protein 70

IGF-1:

Insulin-like growth factor 1

LAMP2a:

Lysosome-associated membrane protein type 2a

LC3:

Microtubule-associated protein 1 light chain 3

Nrf2:

NF-related nuclear factor

SAMP8:

Senescence-accelerated mouse P8

TOR:

Target of rapamycin

TSC1:

Tuberous sclerosis complex 1

ULK1:

Unc-51-like autophagy activating kinase 1

References

  • Avet-Rochex A, Carvajal N, Christoforou CP, Yeung K, Maierbrugger KT, Hobbs C, Lalli G, Cagin U, Plachot C, McNeill H, Bateman JM (2014) Unkempt is negatively regulated by mTOR and uncouples neuronal differentiation from growth control. PLoS Genet 10:e1004624

    CrossRef  Google Scholar 

  • Crews L, Spencer B, Desplats P, Patrick C, Paulino A, Rockenstein E, Hansen L, Adame A, Galasko D, Masliah E (2010) Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PLoS ONE 5:e9313

    CrossRef  Google Scholar 

  • Cuervo AM, Wong E (2014) Chaperone-mediated autophagy: roles in disease and aging. Cell Res 24:92–104

    CAS  CrossRef  Google Scholar 

  • de Cabo R, Carmona-Gutierrez D, Bernier M, Hall MN, Madeo F (2014) The search for antiaging interventions: from elixirs to fasting regimens. Cell 157:1515–1526

    CrossRef  Google Scholar 

  • Garcia-Prat L, Munoz-Canoves P, Martinez-Vicente M (2016) Dysfunctional autophagy is a driver of muscle stem cell functional decline with aging. Autophagy 12:612–613

    CAS  CrossRef  Google Scholar 

  • Guarente L (2007) Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol 72:483–488

    CAS  CrossRef  Google Scholar 

  • Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395

    CAS  CrossRef  Google Scholar 

  • Italiano A, Chen CL, Thomas R, Breen M, Bonnet F, Sevenet N, Longy M, Maki RG, Coindre JM, Antonescu CR (2012) Alterations of the p53 and PIK3CA/AKT/mTOR pathways in angiosarcomas: a pattern distinct from other sarcomas with complex genomics. Cancer 118:5878–5887

    CAS  CrossRef  Google Scholar 

  • Kamada Y (2010) Prime-numbered Atg proteins act at the primary step in autophagy: unphosphorylatable Atg13 can induce autophagy without TOR inactivation. Autophagy 6:415–416

    CrossRef  Google Scholar 

  • Leidal AM, Levine B, Debnath J (2018) Autophagy and the cell biology of age-related disease. Nat Cell Biol 20:1338–1348

    CAS  CrossRef  Google Scholar 

  • Liu S, Lu B (2010) Reduction of protein translation and activation of autophagy protect against PINK1 pathogenesis in Drosophila melanogaster. PLoS Genet 6:e1001237

    CrossRef  Google Scholar 

  • Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217

    CAS  CrossRef  Google Scholar 

  • Luo Y, Hartford SA, Zeng R, Southard TL, Shima N, Schimenti JC (2014) Hypersensitivity of primordial germ cells to compromised replication-associated DNA repair involves ATM-p53-p21 signaling. PLoS Genet 10:e1004471

    CrossRef  Google Scholar 

  • Ma Q, Qiang J, Gu P, Wang Y, Geng Y, Wang M (2011) Age-related autophagy alterations in the brain of senescence accelerated mouse prone 8 (SAMP8) mice. Exp Gerontol 46:533–541

    CrossRef  Google Scholar 

  • Ma Y, Qi M, An Y, Zhang L, Yang R, Doro DH, Liu W, Jin Y (2018) Autophagy controls mesenchymal stem cell properties and senescence during bone aging. Aging Cell 17

    CrossRef  Google Scholar 

  • Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803

    CAS  CrossRef  Google Scholar 

  • Owusu-Ansah E, Song W, Perrimon N (2013) Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155:699–712

    CAS  CrossRef  Google Scholar 

  • Radpour R, Barekati Z, Haghighi MM, Kohler C, Asadollahi R, Torbati PM, Holzgreve W, Zhong XY (2010) Correlation of telomere length shortening with promoter methylation profile of p16p16/Rb and p53/p21 pathways in breast cancer. Mod Pathol 23:763–772

    CAS  CrossRef  Google Scholar 

  • Ryu D, Mouchiroud L, Andreux PA, Katsyuba E, Moullan N, Nicolet-Dit-Felix AA, Williams EG, Jha P, Lo Sasso G, Huzard D, Aebischer P, Sandi C, Rinsch C, Auwerx J (2016) Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med 22:879–88

    CAS  CrossRef  Google Scholar 

  • Sahin E, Depinho RA (2012) Axis of ageing: telomeres, p53 and mitochondria. Nat Rev Mol Cell Biol 13:397–404

    CAS  CrossRef  Google Scholar 

  • Saini N, Oelhafen S, Hua H, Georgiev O, Schaffner W, Bueler H (2010) Extended lifespan of Drosophila parkin mutants through sequestration of redox-active metals and enhancement of anti-oxidative pathways. Neurobiol Dis 40:82–92

    CAS  CrossRef  Google Scholar 

  • Wang L, Sesso HD, Glynn RJ, Christen WG, Bubes V, Manson JE, Buring JE, Gaziano JM (2014) Vitamin E and C supplementation and risk of cancer in men: posttrial follow-up in the Physicians’ Health Study II randomized trial. Am J Clin Nutr 100:915–923

    CAS  CrossRef  Google Scholar 

  • Weatherill DB, Dyer J, Sossin WS (2010) Ribosomal protein S6 kinase is a critical downstream effector of the target of rapamycin complex 1 for long-term facilitation in Aplysia. J Biol Chem 285:12255–12267

    CAS  CrossRef  Google Scholar 

  • Zhang C, Cuervo AM (2008) Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat Med 14:959–965

    CAS  CrossRef  Google Scholar 

  • Ziv E, Hu D (2011) Genetic variation in insulin/IGF-1 signaling pathways and longevity. Ageing Res Rev 10:201–204

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Hong Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Luo, L., Qin, ZH. (2019). Autophagy, Aging, and Longevity. In: Qin, ZH. (eds) Autophagy: Biology and Diseases. Advances in Experimental Medicine and Biology, vol 1206. Springer, Singapore. https://doi.org/10.1007/978-981-15-0602-4_24

Download citation