Skip to main content

Autophagy and Lipid Metabolism

  • Chapter
  • First Online:
Autophagy: Biology and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1206))

Abstract

Autophagy is a conserved catabolic process that delivers intracellular proteins and organelles to the lysosome for degradation and recycling. Evidences over the past decades have proved that autophagy participates in cell fate decision and also plays a key role in regulating cellular energy and nutrient stores. Lipid droplets (LDs) are the main lipid storage form in living organisms. The process of autophagic degradation of LDs is referred to lipophagy or macrolipophagy. Lipophagy is not only indispensable for the cellular lipid metabolism but also closely associated with several metabolic disorders such as obesity, hepatic steatosis, atherosclerosis, and so on. Here, we summarize recent progress in understanding the molecular mechanisms of lipophagy regulation and the emerging roles of lipophagy in various biological processes and metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3-MA:

3-methyladenine

ATGL:

Adipose triglyceride lipase

CD36:

Cluster of differentiation 36

CGI-58:

Comparative gene identification-58

CHOP:

C/EBP homologous protein

CYP2E1:

Cytochrome P450 2E1

CMA:

Chaperone-mediated autophagy

DHA:

Docosahexaenoic acid

DMP:

3,5-dimethylpyrazole

DNM2:

Dynamin 2

eIF4A:

Eukaryotic initiation factor 4A

FXR:

Farsenoid X receptor

FOXO1:

Transcription factor forkhead box O1

GLP-1:

Glucagon-like peptide-1

HBV:

Hepatitis B virus

HCV:

Hepatitis C virus

HOPS tethering complex:

Homotypic fusion and vacuole protein sorting complex

HSL:

Hormone-sensitive lipase

Hsp70:

Heat shock cognate protein of 70 kDa

LAMP2A:

Lysosome-associated membrane protein 2A

LIPL-1:

Lysosomal acid lipases 1

LPL-1:

Lipoprotein lipase-1

MXL-3:

Basic helix–loop–helix transcription factor Max-like 3

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Nonalcoholic steatohepatitis

NDP52:

Nuclear dot protein 52 kDa

PDCD4:

Programmed Cell Death Protein 4

PGC-1α:

Peroxisome proliferator-activated receptor-γ coactivator-1 alpha

PI3KCIII:

Phosphatidylinositol-3 kinase class III

PL:

Phospholipid

PLINs:

Perilipins

PLIN1:

Perilipin1

PLIN2:

Perilipin2

PLIN3:

Perilipin3

PLIN4:

Perilipin4

PLIN5:

Perilipin5

ROS:

Reactive oxygen species

Sidt2:

SID1 transmembrane family, member 2

Sirt1:

Silent information regulator 1

SNARE:

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors

SREBP2:

Sterol regulatory element-binding protein-2

TBC1D15:

TBC1 domain family member 15

TBC1D17:

TBC1 domain family member 17

TG:

Triglyceride

TFE3:

Transcription factor E3

TFEB:

Transcription factor EB

References

  • Bai Y, Meng L, Han L et al (2019) Lipid storage and lipophagy regulates ferroptosis. Biochem Biophys Res Commun 508:997–1003

    Article  CAS  Google Scholar 

  • Balderhaar HJ, Ungermann C (2013) CORVET and HOPS tethering complexes—coordinators of endosome and lysosome fusion. J Cell Sci 126:1307–1316

    Article  CAS  Google Scholar 

  • Chen R, Wang QX, Song SH et al (2016) Protective role of autophagy in methionine-choline deficient diet-induced advanced nonalcoholic steatohepatitis in mice. Eur J Pharmacol 770:126–133

    Article  CAS  Google Scholar 

  • Cuervo AM (2008) Autophagy and aging: keeping that old broom working. Trends Genet 24:604–612

    Article  CAS  Google Scholar 

  • Dreux M, Gastaminza P, Wieland SF et al (2009) The autophagy machinery is required to initiate hepatitis C virus replication. Proc Natl Acad Sci USA 106:14046–14051

    Article  CAS  Google Scholar 

  • Gao FY, Li GP, Liu C et al (2018) Autophagy regulates testosterone synthesis by facilitating cholesterol uptake in Leydig cells. J Cell Biol 217:2103–2119

    Article  CAS  Google Scholar 

  • Kaushik S, Cuervo AM (2016) AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA. Autophagy 12:432–438

    Article  CAS  Google Scholar 

  • Kim HS, Montana V, Jang HJ et al (2013) Epigallocatechin gallate (EGCG) stimulates autophagy in vascular endothelial cells: a potential role for reducing lipid accumulation. J Biol Chem 288:22693–22705

    Article  CAS  Google Scholar 

  • Kovsan J, Bluher M, Tarnovscki T et al (2011) Altered autophagy in human adipose tissues in obesity. J Clin Endocrinol Metab 96:E268–E277

    Article  CAS  Google Scholar 

  • Li Z, Schulze RJ, Weller SG et al (2016) A novel Rab10-EHBP1-EHD2 complex essential for the autophagic engulfment of lipid droplets. Sci Adv 2:e1601470

    Article  Google Scholar 

  • Li Y, Yang P, Zhao L et al (2019) CD36 plays a negative role in the regulation of lipophagy in hepatocytes through an AMPK-dependent pathway. J Lipid Res 60:844–855

    Article  CAS  Google Scholar 

  • Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473:317–325

    Article  CAS  Google Scholar 

  • O’Rourke EJ, Ruvkun G (2013) MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat Cell Biol 15:668–676

    Article  Google Scholar 

  • Rui Y-N, Xu Z, Patel B et al (2015) Huntingtin functions as a scaffold for selective macroautophagy. Nat Cell Biol 17:262–275

    Article  CAS  Google Scholar 

  • Sathyanarayan A, Mashek MT, Mashek DG (2017) ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism. Cell Reports 19:1–9

    Article  CAS  Google Scholar 

  • Schulze RJ, Weller SG, Schroeder B et al (2013) Lipid droplet breakdown requires dynamin 2 for vesiculation of autolysosomal tubules in hepatocytes. J Cell Biol 203:315–326

    Article  CAS  Google Scholar 

  • Seo YK, Jeon TI, Chong HK et al (2011) Genome-wide localization of SREBP-2 in hepatic chromatin predicts a role in autophagy. Cell Metab 13:367–375

    Article  CAS  Google Scholar 

  • Settembre C, De Cegli R, Mansueto G et al (2013) TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol 15:1016–1016

    Article  CAS  Google Scholar 

  • Sharma S, Mells JE, Fu PP et al (2011) GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy. PLoS ONE 6:e25269

    Article  CAS  Google Scholar 

  • Singh R, Kaushik S, Wang Y et al (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135

    Article  CAS  Google Scholar 

  • Sinha RA, You SH, Zhou J et al (2012) Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy. J Clin Investig 122:2428–2438

    Article  CAS  Google Scholar 

  • Thoen LFR, Guimaraes ELM, Dolle L et al (2012) A role for autophagy during hepatic stellate cell activation. J Hepatol 56:S161–S161

    Article  Google Scholar 

  • Wang L, Jiang Y, Song X et al (2016) Pdcd4 deficiency enhances macrophage lipoautophagy and attenuates foam cell formation and atherosclerosis in mice. Cell Death Dis 7:e2055

    Article  CAS  Google Scholar 

  • Wilfling F, Haas JT, Walther TC et al (2014) Lipid droplet biogenesis. Curr Opin Cell Biol 29:39–45

    Article  CAS  Google Scholar 

  • Yamano K, Fogel AI, Wang C et al (2014) Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy. Elife 3:e01612

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khawar, M.B., Gao, H., Li, W. (2019). Autophagy and Lipid Metabolism. In: Qin, ZH. (eds) Autophagy: Biology and Diseases. Advances in Experimental Medicine and Biology, vol 1206. Springer, Singapore. https://doi.org/10.1007/978-981-15-0602-4_17

Download citation

Publish with us

Policies and ethics