Skip to main content

Zinc Signaling in Skeletal Muscle

  • Chapter
  • First Online:
Book cover Zinc Signaling

Abstract

This chapter focuses on how zinc regulates several major functions of skeletal muscles. A common theme throughout this chapter will be how zinc concentration and localization mediated by ZIPs, ZnTs, and metallothioneins affect muscle contraction via zinc-binding proteins and modulation of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway to maintain homeostasis and how TRIM family proteins modulate the integrity of muscle fibers and their regeneration following injuries. Additionally, we examine how disruption in zinc homeostasis results in reduced function in some muscle-specific proteins and produces myopathies such as cachexia and impaired glucose metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul-Ghani MA, DeFronzo RA (2010) Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol 2010:476279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alonso-Martin S, Rochat A, Mademtzoglou D, Morais J, de Reyniès A, Auradé F, Chang TH-T, Zammit PS, Relaix F (2016) Gene expression profiling of muscle stem cells identifies novel regulators of postnatal myogenesis. Front Cell Dev Biol 4:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Aydemir TB, Troche C, Kim J, Kim M-H, Teran OY, Leeuwenburgh C, Cousins RJ (2016) Aging amplifies multiple phenotypic defects in mice with zinc transporter Zip14 (Slc39a14) deletion. Exp Gerontol 85:88–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodine SC, Baehr LM (2014) Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Metab 307:E469–E484

    CAS  Google Scholar 

  • Cai C, Masumiya H, Weisleder N et al (2009) MG53 nucleates assembly of cell membrane repair machinery. Nat Cell Biol 11:56–64

    Article  CAS  PubMed  Google Scholar 

  • Cai C, Lin P, Zhu H, Ko J-K, Hwang M, Tan T, Pan Z, Korichneva I, Ma J (2015) Zinc binding to MG53 protein facilitates repair of injury to cell membranes. J Biol Chem 290:13830–13839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao C-M, Zhang Y, Weisleder N et al (2010) MG53 constitutes a primary determinant of cardiac ischemic preconditioning. Circulation 121:2565–2574

    Article  CAS  PubMed  Google Scholar 

  • Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME (2012) Zinc and human health: an update. Arch Toxicol 86:521–534

    Article  CAS  PubMed  Google Scholar 

  • Ching LL, Williams AJ, Sitsapesan R (2000) Evidence for Ca(2+) activation and inactivation sites on the luminal side of the cardiac ryanodine receptor complex. Circ Res 87:201–206

    Article  CAS  PubMed  Google Scholar 

  • Colvin RA, Holmes WR, Fontaine CP, Maret W (2010) Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics 2:306

    Article  CAS  PubMed  Google Scholar 

  • Edman KAP, Grieve DW, Nilsson E (1966) Studies of the excitation-contraction mechanism in the skeletal muscle and the myocardium. Pflugers Arch Gesamte Physiol Menschen Tiere 290:320–334

    Article  CAS  PubMed  Google Scholar 

  • Foster DM, Aamodt RL, Henkin RI, Berman M (1979) Zinc metabolism in humans: a kinetic model. Am J Physiol Integr Comp Physiol 237:R340–R349

    Article  CAS  Google Scholar 

  • Fujitani Y, Tamaki M, Fukunaka A, Watada H (2014) Zinc and its role in the pathogenesis of type 2 diabetes. In: Zinc signals in cellular functions and disorders. Springer, Tokyo, pp 269–283

    Google Scholar 

  • Gao S-X, Guo J, Fan G-Q, Qiao Y, Zhao R-Q, Yang X-J (2018) ZAG alleviates HFD-induced insulin resistance accompanied with decreased lipid depot in skeletal muscle in mice. J Lipid Res 59:2277–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodyear LJ, Hirshman MF, Horton ES (1991) Exercise-induced translocation of skeletal muscle glucose transporters. Am J Physiol Metab 261:E795–E799

    CAS  Google Scholar 

  • Gordon SJV, Fenker DE, Vest KE, Padilla-Benavides T (2018) Manganese influx and expression of ZIP8 is essential in primary myoblasts and contributes to activation of SOD2. bioRxiv 494542

    Google Scholar 

  • Graham ZA, Gallagher PM, Cardozo CP (2015) Focal adhesion kinase and its role in skeletal muscle. J Muscle Res Cell Motil 36:305–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gushchina LV, Bhattacharya S, McElhanon KE, Choi JH, Manring H, Beck EX, Alloush J, Weisleder N (2017) Treatment with recombinant human MG53 protein increases membrane integrity in a mouse model of limb girdle muscular dystrophy 2B. Mol Ther 25:2360–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He B, Tang R, Weisleder N et al (2012) Enhancing muscle membrane repair by gene delivery of MG53 ameliorates muscular dystrophy and heart failure in δ-Sarcoglycan-deficient hamsters. Mol Ther 20:727–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinz B (2007) Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 127:526–537

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Xiao R-P (2018) MG53 and disordered metabolism in striated muscle. Biochim Biophys Acta – Mol Basis Dis 1864:1984–1990

    Article  CAS  PubMed  Google Scholar 

  • Huang L (2014) Zinc and its transporters, pancreatic β-cells, and insulin metabolism. Vitam Horm 95:365–390

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Yu YY, Kirschke CP, Gertz ER, Lloyd KKC (2007) Znt7( Slc30a7)-deficient mice display reduced body zinc status and body fat accumulation. J Biol Chem 282:37053–37063

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Kirschke CP, Lay Y-AE, Levy LB, Lamirande DE, Zhang PH (2012) Znt7-null mice are more susceptible to diet-induced glucose intolerance and insulin resistance. J Biol Chem 287:33883–33896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Tepaamorndech S, Kirschke CP, Newman JW, Keyes WR, Pedersen TL, Dumnil J (2018) Aberrant fatty acid metabolism in skeletal muscle contributes to insulin resistance in zinc transporter 7 (znt7)-knockout mice. J Biol Chem 293:7549–7563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilouz R, Kaidanovich O, Gurwitz D, Eldar-Finkelman H (2002) Inhibition of glycogen synthase kinase-3beta by bivalent zinc ions: insight into the insulin-mimetic action of zinc. Biochem Biophys Res Commun 295:102–106

    Article  CAS  PubMed  Google Scholar 

  • Isaacson A, Sandow A (1963) Effects of zinc on responses of skeletal muscle. J Gen Physiol 46:655–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinno N, Nagata M, Takahashi T (2014) Marginal zinc deficiency negatively affects recovery from muscle injury in mice. Biol Trace Elem Res 158:65–72

    Article  CAS  PubMed  Google Scholar 

  • Khamzina L, Veilleux A, Bergeron S, Marette A (2005) Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 146:1473–1481

    Article  CAS  PubMed  Google Scholar 

  • Kimura T, Kambe T (2016) The functions of metallothionein and ZIP and ZnT transporters: an overview and perspective. Int J Mol Sci 17:336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kristiansen S, Hargreaves M, Richter EA (1996) Exercise-induced increase in glucose transport, GLUT-4, and VAMP-2 in plasma membrane from human muscle. Am J Physiol Metab 270:E197–E201

    CAS  Google Scholar 

  • Kristiansen S, Hargreaves M, Richter EA (1997) Progressive increase in glucose transport and GLUT-4 in human sarcolemmal vesicles during moderate exercise. Am J Physiol Metab 272:E385–E389

    CAS  Google Scholar 

  • Kurosaka M, Ogura Y, Funabashi T, Akema T (2017) Early growth response 3 (Egr3) contributes a maintenance of C2C12 myoblast proliferation. J Cell Physiol 232:1114–1122

    Article  CAS  PubMed  Google Scholar 

  • Lange S, Xiang F, Yakovenko A et al (2005) The kinase domain of titin controls muscle gene expression and protein turnover. Science 308:1599–1603

    Article  CAS  PubMed  Google Scholar 

  • Larsson S, Karlberg I, Selin E, Daneryd P, Peterson HI (1987) Trace element changes in serum and skeletal muscle compared to tumour tissue in sarcoma-bearing rats. In Vivo 1:131–140

    CAS  PubMed  Google Scholar 

  • Latres E, Amini AR, Amini AA, Griffiths J, Martin FJ, Wei Y, Lin HC, Yancopoulos GD, Glass DJ (2005) Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J Biol Chem 280:2737–2744

    Article  CAS  PubMed  Google Scholar 

  • Leask A, Abraham DJ (2004) TGF-β signaling and the fibrotic response. FASEB J 18:816–827

    Article  CAS  PubMed  Google Scholar 

  • Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18:39–51

    Article  CAS  PubMed  Google Scholar 

  • Lee Y-P, Chang C-H, Liu H-H, Chen C-Y, Chen C-Y, Hsu C-C, Chang C-I, Lin Y-T, Lee C-S, Tsai J-S (2016) Plasma zinc alpha2-glycoprotein levels correlate positively with frailty severity in female elders. https://doi.org/10.1097/MD.0000000000004753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy S, Beharier O, Etzion Y et al (2009) Molecular basis for zinc transporter 1 action as an endogenous inhibitor of L-type calcium channels. J Biol Chem 284:32434–32443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YV (2014) Zinc and insulin in pancreatic beta-cells. Endocrine 45:178–189

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Song R, Feng Y et al (2015) Upregulation of MG53 induces diabetic cardiomyopathy through transcriptional activation of peroxisome proliferation-activated receptor α. Circulation 131:795–804

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Zhu H, Dai Y, Pan H, Li N, Wang L, Yang H, Yan K, Gong F (2018) Zinc-α2-glycoprotein is associated with obesity in Chinese people and HFD-induced obese mice. Front Physiol 9:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Lodka D, Pahuja A, Geers-Knörr C et al (2016) Muscle RING-finger 2 and 3 maintain striated-muscle structure and function. J Cachexia Sarcopenia Muscle 7:165–180

    Article  PubMed  Google Scholar 

  • Lynch CJ, Patson BJ, Goodman SA, Trapolsi D, Kimball SR (2001) Zinc stimulates the activity of the insulin- and nutrient-regulated protein kinase mTOR. Am J Physiol Metab 281:E25–E34

    CAS  Google Scholar 

  • Ma H, Liu J, Bian Z et al (2015) Effect of metabolic syndrome on mitsugumin 53 expression and function. PLoS One 10:e0124128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mashima H, Washio H (1964) The effect of zinc on the electrical properties of membrane and the twitch tension in frog muscle fibres | Academic Article. Jpn J Physiol 14:538–550

    Article  CAS  PubMed  Google Scholar 

  • McClung JP, Tarr TN, Barnes BR, Scrimgeour AG, Young AJ (2007) Effect of supplemental dietary zinc on the mammalian target of rapamycin (mTOR) signaling pathway in skeletal muscle and liver from post-absorptive mice. Biol Trace Elem Res 118:65–76

    Article  CAS  PubMed  Google Scholar 

  • Miranda ER, Dey CS (2004) Effect of chromium and zinc on insulin signaling in skeletal muscle cells. Biol Trace Elem Res 101:19–36

    Article  CAS  PubMed  Google Scholar 

  • Mnatsakanyan H, Serra RS i, Rico P, Salmerón-Sánchez M (2018) Zinc uptake promotes myoblast differentiation via Zip7 transporter and activation of Akt signalling transduction pathway. Sci Rep 8:13642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Myers SA, Nield A, Myers M (2012) Zinc transporters, mechanisms of action and therapeutic utility: implications for type 2 diabetes mellitus. J Nutr Metab 2012:173712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Myers SA, Nield A, Chew G-S, Myers MA (2013) The zinc transporter, Slc39a7 (Zip7) is implicated in glycaemic control in skeletal muscle cells. PLoS One 8:e79316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen N, Yi J-S, Park H, Lee J-S, Ko Y-G (2014) Mitsugumin 53 (MG53) ligase ubiquitinates focal adhesion kinase during skeletal myogenesis. J Biol Chem 289:3209–3216

    Article  CAS  PubMed  Google Scholar 

  • Nimmanon T, Ziliotto S, Morris S, Flanagan L, Taylor KM (2017) Phosphorylation of zinc channel ZIP7 drives MAPK, PI3K and mTOR growth and proliferation signalling. Metallomics 9:471–481

    Article  CAS  PubMed  Google Scholar 

  • Norouzi S, Adulcikas J, Sohal SS, Myers S (2018) Zinc stimulates glucose oxidation and glycemic control by modulating the insulin signaling pathway in human and mouse skeletal muscle cell lines. PLoS One 13:e0191727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohashi K, Nagata Y, Wada E, Zammit PS, Shiozuka M, Matsuda R (2015) Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade. Exp Cell Res 333:228–237

    Article  CAS  PubMed  Google Scholar 

  • Paskavitz AL, Quintana J, Cangussu D, Tavera-Montañez C, Xiao Y, Ortiz-Miranda S, Navea JG, Padilla-Benavides T (2018) Differential expression of zinc transporters accompanies the differentiation of C2C12 myoblasts. J Trace Elem Med Biol 49:27–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrie L, Chesters JK, Franklin M (1991) Inhibition of myoblast differentiation by lack of zinc. Biochem J 276(Pt 1):109–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell ST, Tisdale MJ (2010a) Antidiabetic properties of zinc-α 2-glycoprotein in ob/ob mice. Endocrinology 151:948–957

    Article  CAS  PubMed  Google Scholar 

  • Russell ST, Tisdale MJ (2010b) Mechanism of attenuation of skeletal muscle atrophy by zinc-α2-glycoprotein. Endocrinology 151:4696–4704

    Article  CAS  PubMed  Google Scholar 

  • Shusterman E, Beharier O, Levy S et al (2017) Zinc transport and the inhibition of the L-type calcium channel are two separable functions of ZnT-1. Metallomics 9:228–238

    Article  CAS  PubMed  Google Scholar 

  • Siren PMA, Siren MJ (2010) Systemic zinc redistribution and dyshomeostasis in cancer cachexia. J Cachexia Sarcopenia Muscle 1:23–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Song R, Peng W, Zhang Y et al (2013) Central role of E3 ubiquitin ligase MG53 in insulin resistance and metabolic disorders. Nature 494:375–379

    Article  CAS  PubMed  Google Scholar 

  • Summermatter S, Bouzan A, Pierrel E et al (2017) Blockade of metallothioneins 1 and 2 increases skeletal muscle mass and strength. Mol Cell Biol. https://doi.org/10.1128/MCB.00305-16

  • Takeshima H, Nishimura S, Matsumoto T et al (1989) Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339:439–445

    Article  CAS  PubMed  Google Scholar 

  • Taylor SR, Preiser H, Sandow A (1972) Action potential parameters affecting excitation-contraction coupling. J Gen Physiol 59:421–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor KM, Hiscox S, Nicholson RI, Hogstrand C, Kille P (2012) Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7. Sci Signal 5:ra11–ra11

    PubMed  PubMed Central  Google Scholar 

  • Thiebaud D, Jacot E, DeFronzo RA, Maeder E, Jequier E, Felber JP (1982) The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. Diabetes 31:957–963

    Article  CAS  PubMed  Google Scholar 

  • Todorov PT, McDevitt TM, Meyer DJ, Ueyama H, Ohkubo I, Tisdale MJ (1998) Purification and characterization of a tumor lipid-mobilizing factor. Cancer Res 58:2353–2358

    CAS  PubMed  Google Scholar 

  • Tuncay E, Bitirim VC, Durak A, Carrat GRJ, Taylor KM, Rutter GA, Turan B (2017) Hyperglycemia-induced changes in ZIP7 and ZnT7 expression cause Zn2+ release from the sarco(endo)plasmic reticulum and mediate ER stress in the heart. Diabetes 66:1346–1358

    Article  CAS  PubMed  Google Scholar 

  • Urso ML, Scrimgeour AG, Chen Y-W, Thompson PD, Clarkson PM (2006) Analysis of human skeletal muscle after 48 h immobilization reveals alterations in mRNA and protein for extracellular matrix components. J Appl Physiol 101:1136–1148

    Article  CAS  PubMed  Google Scholar 

  • Voelkel T, Linke WA (2011) Conformation-regulated mechanosensory control via titin domains in cardiac muscle. Pflugers Arch 462:143–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Chen K-Y, Wei Q-Q, Zhu P-H, Cheng X-Y (2003) Inhibition of ryanodine binding to sarcoplasmic reticulum vesicles of cardiac muscle by Zn2+ ions. Cell Physiol Biochem 11:83–92

    Article  CAS  Google Scholar 

  • Wang C, Vernon R, Lange O, Tyka M, Baker D (2010) Prediction of structures of zinc-binding proteins through explicit modeling of metal coordination geometry. Protein Sci 19:NA–NA

    Article  CAS  Google Scholar 

  • Wang G, Biswas AK, Ma W et al (2018) Metastatic cancers promote cachexia through ZIP14 upregulation in skeletal muscle. Nat Med 24:770–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wastney ME, Henkin RI (1988) Development and application of a model for zinc metabolism in humans. Prog Food Nutr Sci 12:243–254

    CAS  PubMed  Google Scholar 

  • Wastney ME, Aamodt RL, Rumble WF, Henkin RI (1986) Kinetic analysis of zinc metabolism and its regulation in normal humans. Am J Physiol 251:R398–R408

    CAS  PubMed  Google Scholar 

  • Wei R, Wang X, Zhang Y et al (2016) Structural insights into Ca(2+)-activated long-range allosteric channel gating of RyR1. Cell Res 26:977–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisleder N, Takizawa N, Lin P et al (2012) Recombinant MG53 protein modulates therapeutic cell membrane repair in treatment of muscular dystrophy. Sci Transl Med 4:139ra85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wijesekara N, Chimienti F, Wheeler MB (2009) Zinc, a regulator of islet function and glucose homeostasis. Diabetes Obes Metab 11:202–214

    Article  CAS  PubMed  Google Scholar 

  • Woodier J, Rainbow RD, Stewart AJ, Pitt SJ (2015) Intracellular zinc modulates cardiac ryanodine receptor-mediated calcium release. J Biol Chem 290:17599–17610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Lu H, Yang H, Li C, Sang Q, Liu X, Liu Y, Wang Y, Sun Z (2016) Zinc stimulates glucose consumption by modulating the insulin signaling pathway in L6 myotubes: essential roles of Akt–GLUT4, GSK3β and mTOR–S6K1. J Nutr Biochem 34:126–135

    Article  PubMed  CAS  Google Scholar 

  • Xia RH, Cheng XY, Wang H, Chen KY, Wei QQ, Zhang XH, Zhu PH (2000) Biphasic modulation of ryanodine binding to sarcoplasmic reticulum vesicles of skeletal muscle by Zn2+ ions. Biochem J 345(Pt 2):279–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki S, Hasegawa A, Hojyo S, Ohashi W, Fukada T, Nishida K, Hirano T (2012) A novel role of the L-type calcium channel α1D subunit as a gatekeeper for intracellular zinc signaling: zinc wave. PLoS One 7:e39654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Bai X, Yan C et al (2015) Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature 517:50–55

    Article  CAS  PubMed  Google Scholar 

  • Yi J-S, Park JS, Ham Y-M et al (2013) MG53-induced IRS-1 ubiquitination negatively regulates skeletal myogenesis and insulin signalling. Nat Commun 4:2354

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjie Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gumpper, K., Ma, J. (2019). Zinc Signaling in Skeletal Muscle. In: Fukada, T., Kambe, T. (eds) Zinc Signaling. Springer, Singapore. https://doi.org/10.1007/978-981-15-0557-7_7

Download citation

Publish with us

Policies and ethics