Skip to main content

Catalytic Chemical Vapor Deposition Grown Carbon Nanofiber for Bio-electro-chemical and Energy Applications

  • Chapter
  • First Online:
Dynamics and Control of Energy Systems

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Carbon nanofibers (CNFs) are a very promising material of carbon family and gained a severe concern by researchers since the last decades. There are numerous existed technologies for the synthesis of CNF or CNF/composites, but the focus of this book chapter is limited to catalytic chemical vapor deposition (CVD) grown CNFs and their different applications. Owing to the high specific surface area, significant porosity with uniform pores, high electrical conductivity, corrosion resistance, electrochemical stability, biocompatible, less cytotoxic and mechanically stable, they are employed in several biochemical and electrochemical applications such as bioenergy generation, electrode materials for batteries, fuel cell, and supercapacitors and as sensors. They are being used keenly in different catalytic reactions for refining the atmosphere from different types of pollutants such as VOPs, POPs, etc. This paper summarizes the role/effect of various parameters which are actively or passively liable for the growth of CVD grown CNF such as metal catalysts, carbon sources, temperatures, and carbon source decomposition timing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alharbi OML, Basheer AA, Khattab RA, Ali I (2018) Health and environmental effects of persistent organic pollutants. J Mol Liq 263:442–453

    Article  Google Scholar 

  • Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47:2–22

    Article  Google Scholar 

  • An G-H, Lee Y-G, Ahn H-J (2018) Ultrafast ionic diffusion of debossed carbon nanocomposites for lithium storage. J Alloy Compd 764:416–423

    Article  Google Scholar 

  • Anderson PE, Rodríguez NM (2000) Influence of the support on the structural characteristics of carbon nanofibers produced from the metal-catalyzed decomposition of ethylene. Chem Mater 12:823–830

    Article  Google Scholar 

  • Ashfaq M, Singh S, Sharma A, Verma N (2013) Cytotoxic evaluation of the hierarchical web of carbon micronanofibers. Ind Eng Chem Res 52:4672–4682

    Article  Google Scholar 

  • Ashfaq M, Khan S, Verma N (2014) Synthesis of PVA-CAP-based biomaterial in situ dispersed with Cu nanoparticles and carbon micro-nanofibers for antibiotic drug delivery applications. Biochem Eng J 90:79–89

    Article  Google Scholar 

  • Ashfaq M, Verma N, Khan S (2016) Copper/zinc bimetal nanoparticles-dispersed carbon nanofibers: a novel potential antibiotic material. Mater Sci Eng C 59:938–947

    Article  Google Scholar 

  • Ashfaq M, Verma N, Khan S (2017a) Highly effective Cu/Zn-carbon micro/nanofiber-polymer nanocomposite-based wound dressing biomaterial against the P. aeruginosa multi- and extensively drug-resistant strains. Mater Sci Eng C 77:630

    Google Scholar 

  • Ashfaq M, Verma N, Khan S (2017b) Carbon nanofibers as a micronutrient carrier in plants: efficient translocation and controlled release of Cu nanoparticles. Environ Sci Nano 4:138–148

    Article  Google Scholar 

  • Ashfaq M, Verma N, Khan S (2018) Novel polymeric composite grafted with metal nanoparticle-dispersed CNFs as a chemiresistive non-destructive fruit sensor material. Mater Chem Phys 217:216–227

    Article  Google Scholar 

  • Ayusheev AB, Taran OP, Seryak IA, Podyacheva OY, Descorme C, Besson M, Kibis LS, Boronin AI, Romanenko AI, Ismagilov ZR, Parmon V (2014) Ruthenium nanoparticles supported on nitrogen-doped carbon nanofibers for the catalytic wet air oxidation of phenol. Appl Catal B 146:177–185

    Article  Google Scholar 

  • Bailón-García E, Maldonado-Hódar FJ, Carrasco-Marín F, Pérez-Cadenas AF, Bosi S, Prato M (2019) The use of functionalized carbon xerogels in cells growth. Mater Sci Eng C 100:598

    Google Scholar 

  • Bairagi PK, Verma N (2018) Electrochemically deposited dendritic poly (methyl orange) nanofilm on metal-carbon-polymer nanocomposite: a novel non-enzymatic electrochemical biosensor for cholesterol. J Electroanal Chem 814:134–143

    Article  Google Scholar 

  • Barranco V, Lillo-Rodenas MA, Linares-Solano A, Oya A, Pico F, Ibañez J, Agullo-Rueda F, Amarilla JM, Rojo JM (2010) Amorphous carbon nanofibers and their activated carbon nanofibers as supercapacitor electrodes. J Phys Chem C 114:10302–10307

    Article  Google Scholar 

  • Bhadauriya P, Mamtani H, Ashfaq M, Raghav A, Teotia AK, Kumar A, Verma N (2018) Synthesis of yeast-immobilized and copper nanoparticle-dispersed carbon nanofiber-based diabetic wound dressing material: simultaneous control of glucose and bacterial infections. ACS Appl Bio Mater 1:246–258

    Article  Google Scholar 

  • Bhaduri B, Verma N (2014a) Preparation of asymmetrically distributed bimetal ceria (CeO2) and copper (Cu) nanoparticles in nitrogen-doped activated carbon micro/nanofibers for the removal of nitric oxide (NO) by reduction. J Colloid Interface Sci 436:218–226

    Article  Google Scholar 

  • Bhaduri B, Verma N (2014b) A zinc nanoparticles-dispersed multi-scale web of carbon micro-nanofibers for hydrogen production step of ZnO/Zn water splitting thermochemical cycle. Chem Eng Res Des 92:1079–1090

    Article  Google Scholar 

  • Bhaduri B, Verma N (2015a) Carbon bead-supported nitrogen-enriched and Cu-doped carbon nanofibers for the abatement of NO emissions by reduction. J Colloid Interface Sci 457:62–71

    Article  Google Scholar 

  • Bhaduri B, Verma N (2015b) Removal of CO by water–gas shift reaction over bimetal CeO2 and Ni nanoparticles dispersed in carbon micro-nanofibers. Catal Lett 145:1262

    Google Scholar 

  • Bhaduri B, Prajapati YN, Sharma A, Verma N (2012) CuCl2 nanoparticles dispersed in activated carbon fibers for the oxygen production step of the Cu–Cl thermochemical water splitting cycle. Ind Eng Chem Res 51:15633–15641

    Article  Google Scholar 

  • Bhargava SK, Tardio J, Prasad J, Föger K, Akolekar DB, Grocott SC (2006) Wet oxidation and catalytic wet oxidation. Ind Eng Chem Res 45:1221–1258

    Article  Google Scholar 

  • Bhat DK, Jois HSS (2014) Miscibility and conductivity studies of poly(methyl methacrylate) and cellulose acetate phthalate blends. Procedia Mater Sci 5:995–1004

    Article  Google Scholar 

  • Bigdeli S, Fatemi S (2015) Fast carbon nanofiber growth on the surface of activated carbon by microwave irradiation: a modified nano-adsorbent for deep desulfurization of liquid fuels. Chem Eng J 269:306–315

    Article  Google Scholar 

  • Bikshapathi M, Mandal S, Mathur GN, Sharma A, Verma N (2011) Modification of activated carbon fiber by metal dispersion and surface functionalization for the removal of 2-chloroethanol. Ind Eng Chem Res 50:13092–13104

    Article  Google Scholar 

  • Bikshapathi M, Singh S, Bhaduri B, Mathur GN, Sharma A, Verma N (2012a) Fe-nanoparticles dispersed carbon micro and nanofibers: surfactant-mediated preparation and application to the removal of gaseous VOCs. Colloids Surf A Phys Chem Eng Asp 399:46–55

    Article  Google Scholar 

  • Bikshapathi M, Mathur GN, Sharma A, Verma N (2012b) Surfactant-enhanced multiscale carbon webs including nanofibers and Ni-nanoparticles for the removal of gaseous persistent organic pollutants. Ind Eng Chem Res 51:2104–2112

    Article  Google Scholar 

  • Bo X, Zhou M, Guo L (2017) Electrochemical sensors and biosensors based on less aggregated graphene. Biosens Bioelectron 89:167–186

    Article  Google Scholar 

  • Cabrita JF, Abrantes LM, Viana AS (2005) N-hydroxysuccinimide-terminated self-assembled monolayers on gold for biomolecules immobilisation. Electrochim Acta 50:2117–2124

    Article  Google Scholar 

  • Caprioli F, Quercia L (2014) Ethylene detection methods in post-harvest technology: a review. Sens Actuators B Chem 203:187–196

    Article  Google Scholar 

  • Chakraborty A, Deva D, Sharma A, Verma N (2011) Adsorbents based on carbon microfibers and carbon nanofibers for the removal of phenol and lead from water. J Colloid Interface Sci 359:228–239

    Article  Google Scholar 

  • Chaliha S, Bhattacharyya KG (2008) Catalytic wet oxidation of 2-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol in water with Mn(II)-MCM41. Chem Eng J 139:575–588

    Article  Google Scholar 

  • Chen X-G, Liu C-S, Liu C-G, Meng X-H, Lee CM, Park H-J (2006) Preparation and biocompatibility of chitosan microcarriers as biomaterial. Biochem Eng J 27:269–274

    Article  Google Scholar 

  • Chen X, Guo H, Abdeltawab AA, Guan Y, Al-Deyab SS, Yu G, Yu L (2015) Brønsted-Lewis acidic ionic liquids and application in oxidative desulfurization of diesel fuel. Energy Fuels 29:2998–3003

    Article  Google Scholar 

  • Choi C, Cui Y (2012) Recovery of silver from wastewater coupled with power generation using a microbial fuel cell. Bioresour Technol 107:522–525

    Article  Google Scholar 

  • Choi I, Lee DG (2013) Surface modification of carbon fiber/epoxy composites with randomly oriented aramid fiber felt for adhesion strength enhancement. Compos A Appl Sci Manuf 48:1–8

    Article  Google Scholar 

  • Chougule MA, Navale ST, Navale YH, Ramgir NS, Stadler FJ, Khuspe GD, Patil VB (2019) Processing temperature dependent chemiresistive performance of spin-coated cerium oxide films. Mater Chem Phys 224:85–92

    Article  Google Scholar 

  • Das R, Gang S, Nath SS (2011) Preparation and antibacterial activity of silver nanoparticles. J Biomater Nanobiotechnol 02(04):4

    Google Scholar 

  • Dasgupta K, Joshi JB, Banerjee S (2011) Fluidized bed synthesis of carbon nanotubes—a review. Chem Eng J 171:841–869

    Article  Google Scholar 

  • Datta KKR, Srinivasan B, Balaram H, Eswaramoorthy M (2008) Synthesis of agarose-metal/semiconductor nanoparticles having superior bacteriocidal activity and their simple conversion to metal-carbon composites. J Chem Sci 120:579–586

    Article  Google Scholar 

  • De Jong KP, Geus JW (2000) Carbon nanofibers: catalytic synthesis and applications. Catal Rev 42:481–510

    Article  Google Scholar 

  • Dhand V, Prasad JS, Rhee KY, Anjaneyulu Y (2013) Fabrication of high pressure hydrogen adsorption/desorption unit—adsorption study on flame synthesized carbon nanofibers. J Ind Eng Chem 19:944–949

    Article  Google Scholar 

  • Downs WB, Baker RTK (1991) Novel carbon fiber-carbon filament structures. Carbon 29:1173–1179

    Article  Google Scholar 

  • Downs WB, Baker RTK (1995) Modification of the surface properties of carbon fibers via the catalytic growth of carbon nanofibers. J Mater Res 10:625–633

    Article  Google Scholar 

  • Duan X, Ji J, Qian G, Zhou X, Chen D (2015) Recent advances in synthesis of reshaped Fe and Ni particles at the tips of carbon nanofibers and their catalytic applications. Catal Today 249:2–11

    Article  Google Scholar 

  • Fu K, Wang Y, Mao L, Yang X, Peng W, Jin J, Yang S, Li G (2019) Rational assembly of hybrid carbon nanotubes grafted on the carbon nanofibers as reliable and robust bifunctional catalyst for rechargeable zinc-air battery. J Power Sources 421:68–75

    Article  Google Scholar 

  • Gaur N, Narasimhulu K, PydiSetty Y (2018) Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment. J Clean Prod 198:1602–1631

    Google Scholar 

  • Ghasemi M, Daud WRW, Rahimnejad M, Rezayi M, Fatemi A, Jafari Y, Somalu MR, Manzour A (2013) Copper-phthalocyanine and nickel nanoparticles as novel cathode catalysts in microbial fuel cells. Int J Hydrog Energy 38:9533–9540

    Article  Google Scholar 

  • Green O, Smith NA, Ellis AB, Burstyn JN (2004) AgBF4-impregnated poly(vinyl phenyl ketone): an ethylene sensing film. J Am Chem Soc 126:5952–5953

    Article  Google Scholar 

  • Gupta AK, Deva D, Sharma A, Verma N (2009) Adsorptive removal of fluoride by micro-nanohierarchal web of activated carbon fibers. Ind Eng Chem Res 48:9697–9707

    Article  Google Scholar 

  • Gupta AK, Deva D, Sharma A, Verma N (2010) Fe-grown carbon nanofibers for removal of arsenic(V) in wastewater. Ind Eng Chem Res 49:7074–7084

    Article  Google Scholar 

  • Gupta R, Kumar R, Sharma Iitk A, Verma N (2014) Novel Cu–carbon nanofiber composites for the counter electrodes of dye-sensitized solar cells. Int J Energy Res 39:668

    Google Scholar 

  • Gupta R, Kumar R, Sharma A, Verma N (2015) Novel Cu–carbon nanofiber composites for the counter electrodes of dye-sensitized solar cells. Int J Energy Res 39:668–680

    Article  Google Scholar 

  • Gupta S, Yadav A, Verma N (2017) Simultaneous Cr(VI) reduction and bioelectricity generation using microbial fuel cell based on alumina-nickel nanoparticles-dispersed carbon nanofiber electrode. Chem Eng J 307:729–738

    Article  Google Scholar 

  • He C, Liu J, Xie L, Zhang Q, Li C, Gui D, Zhang G, Wu C (2009) Activity and thermal stability improvements of glucose oxidase upon adsorption on core–Shell PMMA—BSA nanoparticles. Langmuir 25:13456–13460

    Article  Google Scholar 

  • Hočevar S, Krašovec UO, Orel B, Aricó AS, Kim H (2000) CWO of phenol on two differently prepared CuO–CeO2 catalysts. Appl Catal B 28:113–125

    Article  Google Scholar 

  • Hood AR, Saurakhiya N, Deva D, Sharma A, Verma N (2013) Development of bimetal-grown multi-scale carbon micro-nanofibers as an immobilizing matrix for enzymes in biosensor applications. Mater Sci Eng C 33:4313–4322

    Article  Google Scholar 

  • Huang J, Liu Y, You T (2010) Carbon nanofiber based electrochemical biosensors: a review. Anal Methods 2:202–211

    Article  Google Scholar 

  • Janssen S, Tessmann T, Lang W (2014) High sensitive and selective ethylene measurement by using a large-capacity-on-chip preconcentrator device. Sens Actuators B Chem 197:405–413

    Article  Google Scholar 

  • Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171

    Article  Google Scholar 

  • Kang J, Shin DH, Yun KN, Masud FA, Lee CJ, Kim MJ (2014) Super growth of vertically-aligned carbon nanofibers and their field emission properties. Carbon 79:149–155

    Article  Google Scholar 

  • Khare P, Talreja N, Deva D, Sharma A, Verma N (2013) Carbon nanofibers containing metal-doped porous carbon beads for environmental remediation applications. Chem Eng J 229:72–81

    Article  Google Scholar 

  • Khare P, Ramkumar J, Verma N (2015) Control of bacterial growth in water using novel laser-ablated metal–carbon–polymer nanocomposite-based microchannels. Chem Eng J 276:65–74

    Article  Google Scholar 

  • Khare P, Ramkumar J, Verma N (2016) Carbon nanofiber-skinned three dimensional Ni/carbon micropillars: high performance electrodes of a microbial fuel cell. Electrochim Acta 219:88–98

    Article  Google Scholar 

  • Kim K-H, Ihm S-K (2011) Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review. J Hazard Mater 186:16–34

    Article  Google Scholar 

  • Kim S-J, Park J-Y, Lee Y-J, Lee J-Y, Yang J-W (2005) Application of a new electrolyte circulation method for the ex situ electrokinetic bioremediation of a laboratory-prepared pentadecane contaminated kaolinite. J Hazard Mater 118:171–176

    Article  Google Scholar 

  • Kim Y, Hayashi T, Endo M, Dresselhaus M (2013) Carbon nanofibers. In: Vajtai R (ed) Nanomaterials. Springer, Berlin, pp 233–262

    Google Scholar 

  • Kshetri T, Thanh TD, Singh SB, Kim NH, Lee JH (2018) Hierarchical material of carbon nanotubes grown on carbon nanofibers for high performance electrochemical capacitor. Chem Eng J 345:39–47

    Article  Google Scholar 

  • Kumar A, Verma N (2018) Wet air oxidation of aqueous dichlorvos pesticide over catalytic copper-carbon nanofiberous beads. Chem Eng J 351:428–440

    Article  Google Scholar 

  • Kvande I, Chen D, Rønning M, Venvik HJ, Holmen A (2005) Highly active Cu-based catalysts on carbon nanofibers for isopropanol dehydrogenation. Catal Today 100:391–395

    Article  Google Scholar 

  • Levec J, Pintar A (2007) Catalytic wet-air oxidation processes: a review. Catal Today 124:172–184

    Article  Google Scholar 

  • Li Y, Bai H, Liu Q, Bao J, Han M, Dai Z (2010) A nonenzymatic cholesterol sensor constructed by using porous tubular silver nanoparticles. Biosens Bioelectron 25:2356–2360

    Article  Google Scholar 

  • Li M, Wu X, Zeng J, Hou Z, Liao S (2015a) Heteroatom doped carbon nanofibers synthesized by chemical vapor deposition as platinum electrocatalyst supports for polymer electrolyte membrane fuel cells. Electrochim Acta 182:351–360

    Article  Google Scholar 

  • Li Y-X, Jiang W-J, Tan P, Liu X-Q, Zhang D-Y, Sun L-B (2015b) What matters to the adsorptive desulfurization performance of metal-organic frameworks? J Phys Chem C 119:21969–21977

    Article  Google Scholar 

  • Liu Y, Harnisch F, Fricke K, Sietmann R, Schröder U (2008) Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure. Biosens Bioelectron 24:1006–1011

    Article  Google Scholar 

  • Lu M, Kharkwal S, Ng HY, Li SFY (2011) Carbon nanotube supported MnO2 catalysts for oxygen reduction reaction and their applications in microbial fuel cells. Biosens Bioelectron 26:4728–4732

    Article  Google Scholar 

  • Ma L, Wang L, Chen R, Chang K, Wang S, Hu X, Sun X, Lu Z, Sun H, Guo Q, Jiang M, Hu J (2016) A low cost compact measurement system constructed using a smart electrochemical sensor for the real-time discrimination of fruit ripening. Sensors (Basel, Switzerland) 16:501

    Article  Google Scholar 

  • Ma Z, Lin L, Wu M, Yu H, Shang T, Zhang T, Zhao M (2018) Total and inorganic arsenic contents in seaweeds: absorption, accumulation, transformation and toxicity. Aquaculture 497:49–55

    Article  Google Scholar 

  • Mansoorian HJ, Mahvi AH, Jafari AJ, Amin MM, Rajabizadeh A, Khanjani N (2013) Bioelectricity generation using two chamber microbial fuel cell treating wastewater from food processing. Enzym Microb Technol 52:352–357

    Article  Google Scholar 

  • Mao X, Simeon F, Rutledge GC, Hatton TA (2013) Electrospun carbon nanofiber webs with controlled density of states for sensor applications. Adv Mater 25:1309–1314

    Article  Google Scholar 

  • Mao X, Rutledge GC, Hatton TA (2014a) Nanocarbon-based electrochemical systems for sensing, electrocatalysis, and energy storage. Nano Today 9:405–432

    Article  Google Scholar 

  • Mao X, Yang X, Rutledge GC, Alan Hatton T (2014b) Ultra-wide-range electrochemical sensing using continuous electrospun carbon nanofibers with high densities of states. ACS Appl Mater Interfaces 6:3394–3405

    Google Scholar 

  • McDonough JR, Choi JW, Yang Y, La Mantia F, Zhang Y, Cui Y (2009) Carbon nanofiber supercapacitors with large areal capacitances. Appl Phys Lett 95:243109

    Article  Google Scholar 

  • Mishra S, Verma N (2016) Carbon bead-supported hollow carbon nanofibers synthesized via templating method for the removal of hexavalent chromium. J Ind Eng Chem 36:346–354

    Article  Google Scholar 

  • Mishra S, Verma N (2017) Surface ion imprinting-mediated carbon nanofiber-grafted highly porous polymeric beads: synthesis and application towards selective removal of aqueous Pb(II). Chem Eng J 313:1142–1151

    Article  Google Scholar 

  • Mishra VS, Mahajani VV, Joshi JB (1995) Wet air oxidation. Ind Eng Chem Res 34:2–48

    Article  Google Scholar 

  • Modi A, Bhaduri B, Verma N (2015) Facile one-step synthesis of nitrogen-doped carbon nanofibers for the removal of potentially toxic metals from water. Ind Eng Chem Res 54:5172–5178

    Article  Google Scholar 

  • Modi A, Singh S, Verma N (2016) In situ nitrogen-doping of nickel nanoparticle-dispersed carbon nanofiber-based electrodes: Its positive effects on the performance of a microbial fuel cell. Electrochim Acta 190:620–627

    Article  Google Scholar 

  • Modi A, Singh S, Verma N (2017) Improved performance of a single chamber microbial fuel cell using nitrogen-doped polymer-metal-carbon nanocomposite-based air-cathode. Int J Hydrog Energy 42:3271–3280

    Article  Google Scholar 

  • Mohamed A (2019) Synthesis, characterization, and applications carbon nanofibers. In: Yaragalla S, Mishra R, Thomas S, Kalarikkal N, Maria HJ (eds) Carbon-based nanofillers and their rubber nanocomposites, pp 243–257 (Elsevier)

    Google Scholar 

  • Öncel Ç, Yürüm Y (2006) Carbon nanotube synthesis via the catalytic CVD method: a review on the effect of reaction parameters. Fullerenes Nanotub Carbon Nanostruct 14:17–37

    Article  Google Scholar 

  • Ovejero G, Rodríguez A, Vallet A, García J (2013) Catalytic wet air oxidation of a non-azo dye with Ni/MgAlO catalyst. Chem Eng J 215–216:168–173

    Article  Google Scholar 

  • Pandey I, Bairagi PK, Verma N (2018) Electrochemically grown polymethylene blue nanofilm on copper-carbon nanofiber nanocomposite: an electrochemical sensor for creatinine. Sens Actuators B Chem 277:562–570

    Article  Google Scholar 

  • Park S, Boo H, Chung TD (2006) Electrochemical non-enzymatic glucose sensors. Anal Chim Acta 556:46–57

    Article  Google Scholar 

  • Pasupuleti SB, Srikanth S, Venkata Mohan S, Pant D (2015) Development of exoelectrogenic bioanode and study on feasibility of hydrogen production using abiotic VITO-CoRE™ and VITO-CASE™ electrodes in a single chamber microbial electrolysis cell (MEC) at low current densities. Bioresour Technol 195:131–138

    Google Scholar 

  • Potter B (2007) Liver-cholesterol and bile formation. In: Enna SJ, Bylund DB (eds) xPharm: the comprehensive pharmacology reference. Elsevier, New York, pp 1–10

    Google Scholar 

  • Prajapati YN, Verma N (2017) Adsorptive desulfurization of diesel oil using nickel nanoparticle-doped activated carbon beads with/without carbon nanofibers: effects of adsorbate size and adsorbent texture. Fuel 189:186–194

    Article  Google Scholar 

  • Prajapati YN, Verma N (2018) Fixed bed adsorptive desulfurization of thiophene over Cu/Ni-dispersed carbon nanofiber. Fuel 216:381–389

    Article  Google Scholar 

  • Pruneanu S, Ali Z, Watson G, Hu S-Q, Lupu D, Biris AR, Olenic L, Mihailescu G (2006) Investigation of electrochemical properties of carbon nanofibers prepared by CCVD method. Part Sci Technol 24:311–320

    Article  Google Scholar 

  • Randviir EP, Banks CE (2013) Analytical methods for quantifying creatinine within biological media. Sens Actuators B Chem 183:239–252

    Article  Google Scholar 

  • Raveendran J, Resmi PE, Ramachandran T, Nair BG, Babu TS (2017) Fabrication of a disposable non-enzymatic electrochemical creatinine sensor. Sens Actuators B Chem 243:589–595

    Google Scholar 

  • Romero A, Garrido A, Nieto-Márquez A, de la Osa AR, de Lucas A, Valverde JL (2007) The influence of operating conditions on the growth of carbon nanofibers on carbon nanofiber-supported nickel catalysts. Appl Catal A 319:246–258

    Article  Google Scholar 

  • Rosenbaum M, Zhao F, Quaas M, Wulff H, Schröder U, Scholz F (2007) Evaluation of catalytic properties of tungsten carbide for the anode of microbial fuel cells. Appl Catal B 74:261–269

    Article  Google Scholar 

  • Saraswat R, Talreja N, Deva D, Sankararamakrishnan N, Sharma A, Verma N (2012) Development of novel in situ nickel-doped, phenolic resin-based micro–nano-activated carbon adsorbents for the removal of vitamin B-12. Chem Eng J 197:250–260

    Article  Google Scholar 

  • Sawasdee V, Pisutpaisal N (2015) Effect of nitrogen concentration on the performance of single-chamber microbial fuel cells. Energy Procedia 79:620–623

    Article  Google Scholar 

  • Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670

    Article  Google Scholar 

  • Shah KA, Tali BA (2016) Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates. Mater Sci Semicond Process 41:67–82

    Article  Google Scholar 

  • Silber A, Hampp N, Schuhmann W (1996) Poly(methylene blue)-modified thick-film gold electrodes for the electrocatalytic oxidation of NADH and their application in glucose biosensors. Biosens Bioelectron 11:215–223

    Article  Google Scholar 

  • Singh S, Verma N (2015a) Graphitic carbon micronanofibers asymmetrically dispersed with alumina-nickel nanoparticles: a novel electrode for mediatorless microbial fuel cells. Int J Hydrog Energy 40:5928–5938

    Article  Google Scholar 

  • Singh S, Verma N (2015b) Fabrication of Ni nanoparticles-dispersed carbon micro-nanofibers as the electrodes of a microbial fuel cell for bio-energy production. Int J Hydrog Energy 40:1145–1153

    Article  Google Scholar 

  • Singh S, Ashfaq M, Singh RK, Joshi HC, Srivastava A, Sharma A, Verma N (2013a) Preparation of surfactant-mediated silver and copper nanoparticles dispersed in hierarchical carbon micro-nanofibers for antibacterial applications. New Biotechnol 30:656–665

    Article  Google Scholar 

  • Singh S, Sharma Iitk A, Verma N, Kumar Singh R, Joshi HC, Srivastava A (2013b) Preparation of novel Ag nanoparticles dispersed activated carbon micro and carbon nanofibers for anti-bacterial applications biotransformation of carbon-based nanomaterials by horseradish peroxidase. Environ Eng Manag J 11:S116

    Google Scholar 

  • Singh S, Singh A, Bais VSS, Prakash B, Verma N (2014) Multi-scale carbon micro/nanofibers-based adsorbents for protein immobilization. Mater Sci Eng C 38:46–54

    Article  Google Scholar 

  • Singh S, Modi A, Verma N (2016) Enhanced power generation using a novel polymer-coated nanoparticles dispersed-carbon micro-nanofibers-based air-cathode in a membrane-less single chamber microbial fuel cell. Int J Hydrog Energy 41:1237–1247

    Article  Google Scholar 

  • Sklorz A, Janßen S, Lang W (2012) Detection limit improvement for NDIR ethylene gas detectors using passive approaches. Sens Actuators B Chem 175:246–254

    Article  Google Scholar 

  • Sklorz A, Janßen S, Lang W (2013) Application of a miniaturised packed gas chromatography column and a SnO2 gas detector for analysis of low molecular weight hydrocarbons with focus on ethylene detection. Sens Actuators B Chem 180:43–49

    Article  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Google Scholar 

  • Stüber F, Font J, Fortuny A, Bengoa C, Eftaxias A, Fabregat A (2005) Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater. Top Catal 33:3

    Google Scholar 

  • Sun W, Wang Y, Zhang Y, Ju X, Li G, Sun Z (2012) Poly(methylene blue) functionalized graphene modified carbon ionic liquid electrode for the electrochemical detection of dopamine. Anal Chim Acta 751:59–65

    Article  Google Scholar 

  • Talreja N, Kumar D, Verma N (2014a) Removal of hexavalent chromium from water using Fe-grown carbon nanofibers containing porous carbon microbeads. J Water Process Eng 3:34–45

    Article  Google Scholar 

  • Talreja N, Kumar D, Verma N (2014b) Removal of hexavalent chromium from water using Fe-grown carbon nanofibers containing porous carbon microbeads. J Water Process Eng 3:34

    Google Scholar 

  • Talukdar P, Bhaduri B, Verma N (2014) Catalytic oxidation of NO over CNF/ACF-supported CeO2 and Cu nanoparticles at room temperature. Ind Eng Chem Res 53:12537–12547

    Article  Google Scholar 

  • Teles FRR, Fonseca LP (2008) Applications of polymers for biomolecule immobilization in electrochemical biosensors. Mater Sci Eng C 28:1530–1543

    Article  Google Scholar 

  • Teo K, Singh C, Chhowalla M, Milne W (2003) Catalytic synthesis of carbon nanotubes and nanofibers. Encycl Nanosci Nanotechnol 10

    Google Scholar 

  • Thakur DB, Tiggelaar RM, Gardeniers JGE, Lefferts L, Seshan K (2009) Growth of carbon nanofiber coatings on nickel thin films on fused silica by catalytic thermal chemical vapor deposition: on the use of titanium, titanium–tungsten and tantalum as adhesion layers. Surf Coat Technol 203:3435–3441

    Article  Google Scholar 

  • Tsai H-Y, Wu C-C, Lee C-Y, Shih EP (2009) Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes. J Power Sources 194:199–205

    Article  Google Scholar 

  • Vander Wal RL, Hall LJ (2001) Flame synthesis of Fe catalyzed single-walled carbon nanotubes and Ni catalyzed nanofibers: growth mechanisms and consequences. Chem Phys Lett 349:178–184

    Google Scholar 

  • Vilas Boas J, Oliveira VB, Marcon LRC, Simões M, Pinto AMFR (2019) Optimization of a single chamber microbial fuel cell using Lactobacillus pentosus: influence of design and operating parameters. Sci Total Environ 648:263–270

    Google Scholar 

  • Viswanath KB, Devasenathipathy R, Wang S-F, Vasantha VS (2017) A new route for the enzymeless trace level detection of creatinine based on reduced graphene oxide/silver nanocomposite biosensor. Electroanalysis 29:559–565

    Article  Google Scholar 

  • Warakulwit C, Yadnum S, Paluka V, Phuakkong O, Niamlaem M, Pongpaisanseree K, Sinthupinyo S, Limtrakul J (2015) Controlled production of carbon nanofibers over cement clinker via oxidative dehydrogenation of acetylene by intrinsic carbon dioxide. Chem Eng J 278:150–158

    Article  Google Scholar 

  • Wesełucha-Birczyńska A, Morajka K, Stodolak-Zych E, Długoń E, Dużyja M, Lis T, Gubernat M, Ziąbka M, Błażewicz M (2018) Raman studies of the interactions of fibrous carbon nanomaterials with albumin. Spectrochim Acta Part A Mol Biomol Spectrosc 196:262–267

    Article  Google Scholar 

  • Yadav BR, Garg A (2014) Catalytic wet oxidation of ferulic acid (a lignin model compound) in the presence of non-noble metal based catalysts at mild conditions. Chem Eng J 252:185–193

    Article  Google Scholar 

  • Yadav A, Verma N (2017) Enhanced hydrogen storage in graphitic carbon micro-nanofibers at moderate temperature and pressure: synergistic interaction of asymmetrically-dispersed nickel-ceria nanoparticles. Int J Hydrog Energy 42:27139–27153

    Article  Google Scholar 

  • Yadav A, Verma N (2018) Carbon bead-supported copper-dispersed carbon nanofibers: an efficient catalyst for wet air oxidation of industrial wastewater in a recycle flow reactor. J Ind Eng Chem 67:448–460

    Article  Google Scholar 

  • Yadav A, Teja AK, Verma N (2016) Removal of phenol from water by catalytic wet air oxidation using carbon bead—supported iron nanoparticle—containing carbon nanofibers in an especially configured reactor. J Environ Chem Eng 4:1504–1513

    Article  Google Scholar 

  • Yadav A, Faisal M, Subramaniam A, Verma N (2017) Nickel nanoparticle-doped and steam-modified multiscale structure of carbon micro-nanofibers for hydrogen storage: effects of metal, surface texture and operating conditions. Int J Hydrog Energy 42:6104–6117

    Article  Google Scholar 

  • Yang J, Lee H, Cho M, Nam J, Lee Y (2012) Nonenzymatic cholesterol sensor based on spontaneous deposition of platinum nanoparticles on layer-by-layer assembled CNT thin film. Sens Actuators B Chem 171–172:374–379

    Article  Google Scholar 

  • Zhang K, Wu XY (2004) Temperature and pH-responsive polymeric composite membranes for controlled delivery of proteins and peptides. Biomaterials 25:5281–5291

    Article  Google Scholar 

  • Zhang X, Cheng S, Liang P, Huang X, Logan BE (2011) Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes. Biores Technol 102:372–375

    Article  Google Scholar 

  • Zhang B, Kang F, Tarascon J-M, Kim J-K (2016) Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog Mater Sci 76:319–380

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Department of Science and Technology, New Delhi, India for providing research grant (DST/INSPIRE/04/2015/001869) to proceed this work and CSIR-Indian Institute of Toxicology Research, Lucknow and Council of Scientific, Madan Mohan Malaviya University of Technology Gorakhpur and Industrial Research—Advanced Materials and Processes Research Institute, Bhopal for providing research facilities. The CSIR-IITR communication number for this article is 3590.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prateek Khare or Shiv Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, S., Khare, P., Singh, S. (2020). Catalytic Chemical Vapor Deposition Grown Carbon Nanofiber for Bio-electro-chemical and Energy Applications. In: Mukhopadhyay, A., Sen, S., Basu, D., Mondal, S. (eds) Dynamics and Control of Energy Systems. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-15-0536-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0536-2_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0535-5

  • Online ISBN: 978-981-15-0536-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics