Skip to main content

Deep Learning Algorithms for Detecting Combustion Instabilities

  • Chapter
  • First Online:
Dynamics and Control of Energy Systems

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Combustion instabilities are prevalent in a variety of systems including gas turbine engines. In this regard, the introduction of active control opens the potential for new paradigms in combustor design and optimization. However, the limited ability to detect the onset of instabilities can lead to difficulty in implementing active control approaches. Machine learning—specifically deep learning tools—may be employed to detect instabilities from various measurement and sensor data related to the combustion process. Deep learning models have recently shown remarkable potential for extraction of meaningful features from data without the need to hand-craft. As one of the early studies of deep learning for combustion instability detection, we extract sequential image frames from high-speed images of a premixed, bluff-body stabilized flame which exhibits varying levels of combustion instability. Using an efficient detection framework (based on 2-D convolutional neural networks) to detect the growth of an unstable mode can lead to effective control schemes. In addition, we apply a second deep learning framework to capture the temporal correlations in the data with corresponding learned spatial features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M et al (2016) Tensorflow: a system for large-scale machine learning. OSDI 16:265–283

    Google Scholar 

  • Akintayo A, Lore KG, Sarkar S, Sarkar S (2016) Prognostics of combustion instabilities from hi-speed flame video using a deep convolutional selective autoencoder. Int J Progn Health Manag 7(023):1–14

    Google Scholar 

  • Banaszuk A, Ariyur KB, Krstić M, Jacobson CA (2004) An adaptive algorithm for control of combustion instability. Automatica 40(11):1965–1972

    Article  MathSciNet  Google Scholar 

  • Bellows BD, Bobba MK, Forte A, Seitzman JM, Lieuwen T (2007) Flame transfer function saturation mechanisms in a swirl-stabilized combustor. Proc Combust Inst 31(2):3181–3188

    Article  Google Scholar 

  • Bengio Y (1991) Artificial neural networks and their application to sequence recognition. McGill University

    Google Scholar 

  • Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Netw 5(2):157–166

    Article  Google Scholar 

  • Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25(1):539–575

    Article  MathSciNet  Google Scholar 

  • Candel S, Durox D, Schuller T, Bourgouin JF, Moeck JP (2014) Dynamics of swirling flames. Annu Rev Fluid Mech 46:147–173

    Article  MathSciNet  Google Scholar 

  • Chakravarthy SR, Shreenivasan OJ, Boehm B, Dreizler A, Janicka J (2007) Experimental characterization of onset of acoustic instability in a nonpremixed half-dump combustor. J Acoust Soc Am 122(1):120–127

    Article  Google Scholar 

  • Chollet F et al (2015) Keras

    Google Scholar 

  • Collobert R, Weston J (2008) A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th international conference on machine learning. ACM, pp. 160–167

    Google Scholar 

  • Culick F, Kuentzmann P (2006) Unsteady motions in combustion chambers for propulsion systems. Technical Report, NATO Research and Technology Organization, Neuilly-sur-Seine, France

    Google Scholar 

  • Darema F (2005) Dynamic data driven applications systems: new capabilities for application simulations and measurements. In: International conference on computational science. Springer, pp. 610–615

    Google Scholar 

  • Dowling AP (1997) Nonlinear self-excited oscillations of a ducted flame. J Fluid Mech 346:271–290

    Article  MathSciNet  Google Scholar 

  • Farabet C, Couprie C, Najman L, LeCun Y (2013) Learning hierarchical features for scene labeling. IEEE Trans Pattern Anal Mach Intell 35(8):1915–1929

    Article  Google Scholar 

  • Fisher SC, Rahman SA (2009) Remembering the giants: Apollo rocket propulsion development

    Google Scholar 

  • Gangopadhyay T, Locurto A, Boor P, Michael JB, Sarkar S (2018) Characterizing combustion instability using deep convolutional neural network. In: ASME 2018 dynamic systems and control conference. American Society of Mechanical Engineers, pp. V001T13A004–V001T13A004 (2018)

    Google Scholar 

  • Gers FA, Schmidhuber J, Cummins F (1999) Learning to forget: Continual prediction with LSTM

    Google Scholar 

  • Ghosal S, Akintayo A, Boor P, Sarkar S (2017) High speed video-based health monitoring using 3D deep learning

    Google Scholar 

  • Ghosal S, Ramanan V, Sarkar S, Chakravarthy SR, Sarkar S (2016) Detection and analysis of combustion instability from hi-speed flame images using dynamic mode decomposition. In: ASME 2016 dynamic systems and control conference. American Society of Mechanical Engineers, pp. V001T12A005–V001T12A005

    Google Scholar 

  • Gopalakrishnan E, Sharma Y, John T, Dutta PS, Sujith R (2016) Early warning signals for critical transitions in a thermoacoustic system. Sci Rep 6:35310

    Article  Google Scholar 

  • Gorinevsky D, Overman N, Goeke J (2012) Amplitude and phase control in active suppression of combustion instability. In: American control conference (ACC). IEEE, pp. 2601–2608

    Google Scholar 

  • Gotoda H, Nikimoto H, Miyano T, Tachibana S (2011) Dynamic properties of combustion instability in a lean premixed gas-turbine combustor. Chaos Interdiscip J Nonlinear Sci 21(1):013124

    Google Scholar 

  • Greff K, Srivastava RK, KoutnĂ­k J, Steunebrink BR, Schmidhuber J (2017) LSTM: a search space odyssey. IEEE Trans Neural Netw Learn Syst 28(10):2222–2232

    Article  MathSciNet  Google Scholar 

  • Heckl MA (1988) Active control of the noise from a Rijke tube. J Sound Vib 124(1):117–133

    Article  Google Scholar 

  • Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Sci 313(5786):504–507

    Google Scholar 

  • Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR (2012) Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580

  • Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  Google Scholar 

  • Huang Y, Yang V (2009) Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog Energy Combust Sci 35(4):293–364

    Article  Google Scholar 

  • Hussain AKMF (1983) Coherent structures—reality and myth. Phys Fluids 26:2816–2850. https://doi.org/10.1063/1.864048

    Article  MATH  Google Scholar 

  • Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167

  • Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980

  • Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105

    Google Scholar 

  • LeCun Y, Bengio Y et al (1995) Convolutional networks for images, speech, and time series. Handb Brain Theory Neural Netw 3361(10):1995

    Google Scholar 

  • LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  • Lieuwen TC (2012) Unsteady combustor physics. Cambridge University Press, New York

    Book  Google Scholar 

  • Lore KG, Akintayo A, Sarkar S (2017) LLNET: a deep autoencoder approach to natural low-light image enhancement. Pattern Recognit 61:650–662

    Article  Google Scholar 

  • Nair V, Sujith R (2014) Multifractality in combustion noise: predicting an impending combustion instability. J Fluid Mech 747:635–655

    Article  Google Scholar 

  • Nair V, Thampi G, Karuppusamy S, Gopalan S, Sujith R (2013) Loss of chaos in combustion noise as a precursor of impending combustion instability. Int J Spray Combust Dyn 5(4):273–290

    Article  Google Scholar 

  • Noiray N, Durox D, Schuller T, Candel S (2008) A unified framework for nonlinear combustion instability analysis based on the flame describing function. J Fluid Mech 615:139–167

    Article  Google Scholar 

  • Palies P, Schuller T, Durox D, Candel S (2011) Modeling of premixed swirling flames transfer functions. Proc Combust Inst 33(2):2967–2974

    Article  Google Scholar 

  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    MathSciNet  MATH  Google Scholar 

  • Ray A (2004) Symbolic dynamic analysis of complex systems for anomaly detection. Signal Process 84(7):1115–1130

    Article  Google Scholar 

  • Rayleigh JWS (1878) The explanation of certain acoustical phenomena. Nature 18(455):319–321

    Article  Google Scholar 

  • Sarkar S, Lore KG, Sarkar S (2015) Early detection of combustion instability by neural-symbolic analysis on hi-speed video. In: Proceedings of the 2015th international conference on cognitive computation: integrating neural and symbolic approaches, vol. 1583. CEUR-WS.org, pp. 93–101

    Google Scholar 

  • Sarkar S, Lore KG, Sarkar S, Ramanan V, Chakravarthy SR, Phoha S, Ray A (2015) Early detection of combustion instability from hi-speed flame images via deep learning and symbolic time series analysis. In: Annual conference of the prognostics and health management

    Google Scholar 

  • Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, Van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461(7260):53

    Article  Google Scholar 

  • Schmid PJ (2010) Dynamic mode decomposition of numerical and experimental data. J Fluid Mech 656:5–28

    Article  MathSciNet  Google Scholar 

  • Sen U, Gangopadhyay T, Bhattacharya C, Mukhopadhyay A, Sen S (2018) Dynamic characterization of a ducted inverse diffusion flame using recurrence analysis. Combust Sci Technol 190(1):32–56

    Article  Google Scholar 

  • Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tryambak Gangopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gangopadhyay, T., Locurto, A., Michael, J.B., Sarkar, S. (2020). Deep Learning Algorithms for Detecting Combustion Instabilities. In: Mukhopadhyay, A., Sen, S., Basu, D., Mondal, S. (eds) Dynamics and Control of Energy Systems. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-15-0536-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0536-2_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0535-5

  • Online ISBN: 978-981-15-0536-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics