Advertisement

A Review on Noise-Induced Dynamics of Thermoacoustic Systems

  • Lipika KabirajEmail author
  • Neha Vishnoi
  • Aditya Saurabh
Chapter
Part of the Energy, Environment, and Sustainability book series (ENENSU)

Abstract

Practical combustion systems such as gas turbine combustors, rocket engines, industrial furnaces, and boilers are essentially thermoacoustic oscillators involving acoustic energy amplification through feedback interaction among fluctuations in the aerodynamic field, acoustic field, and the combustion process. Such systems are also noisy, in the sense that there inherently exists noise within the system. Noise may be associated with various sources–noise in fuel/air supply systems, fluctuations in the flow field, acoustic fluctuations, fluctuations in the heat release. Additionally, such noise may be correlated or uncorrelated, may have a specific spectral characteristic; but often noise will interact with/influence the feedback process. Since the importance of noise in determining the stability of the system discussed by Culick et al. (Combustion noise and combustion instabilities in propulsion systems, 1992) and group at Caltech, there have been several recent contributions to the theory of noise-induced phenomena in thermoacoustic systems–further advancements in the determination of system stability through noise-induced behaviour in the system prior to bifurcation as well as during the self-excited state, noise-induced effects in the presence of nonlinear interactions, noise-induced transitions (incl. dynamics in the bistable regime in the case of transition to self-excited oscillations via a subcritical Hopf bifurcation), as well as recent identification of interesting behaviour such as noise-induced coherence and stochastic bifurcations (stochastic P-bifurcations). The latter effects are based on new findings in the theory of dynamical systems and since reports on their influence in thermoacoustic systems are also being investigated in other aero/hydrodynamic systems such as in jets. The review will focus on the influence of developments in the theory of random noise (such as the Fokker-Plank equations), the theory of oscillators and dynamical systems on noise induced behaviour in thermoacoustic systems; experiments, modelling, and predictions on noisy thermoacoustic systems; and the implications of these findings on practical systems.

References

  1. Arnold L (1995) Random dynamical systems. In: Dynamical systems. Springer Berlin Heidelberg, pp 1–43.  https://doi.org/10.1007/bfb0095238
  2. Benzi R, Sutera A, Vulpiani A (1981) The mechanism of stochastic resonance. J Phys A: Math Gen 14(11):L453MathSciNetCrossRefGoogle Scholar
  3. Benzi R, Parisi G, Sutera A, Vulpiani A (1982) Stochastic resonance in climatic change. Tellus 34(1):10–16CrossRefGoogle Scholar
  4. Berthet R, Petrossian A, Residori S, Roman B, Fauve S (2003) Effect of multiplicative noise on parametric instabilities. Phys D: Nonlinear Phenom 174(1–4):84–99CrossRefGoogle Scholar
  5. Bonciolini G, Boujo E, Noiray N (2017) Output-only parameter identification of a colored-noise-driven van-der-pol oscillator: thermoacoustic instabilities as an example. Phys Rev E 95(6):062217CrossRefGoogle Scholar
  6. Boujo E, Noiray N (2017) Robust identification of harmonic oscillator parameters using the adjoint fokker-planck equation. Proc Roy Soc A Math Phys Eng Sci 473(2200):20160894.  https://doi.org/10.1098/rspa.2016.0894
  7. Burnley VS (1996) Nonlinear combustion instabilities and stochastic sources. PhD thesis, California Institute of TechnologyGoogle Scholar
  8. Burnley VS, Culick FEC (1997) Some dynamics of acoustic oscillations with nonlinear combustion and noise. Int J Energ Mater Chem Propul 998–1013.  https://doi.org/10.1615/intjenergeticmaterialschemprop.v4.i1-6.930
  9. Burnley VS, Culick FEC (2000) Influence of random excitations on acoustic instabilities in combustion chambers. AIAA J 38(8):1403–1410.  https://doi.org/10.2514/2.1116
  10. Candel S, Durox D, Ducruix S, Birbaud AL, Noiray N, Schuller T (2009) Flame dynamics and combustion noise: progress and challenges. Int J Aeroacoustics 8(1):1–56.  https://doi.org/10.1260/147547209786234984
  11. Candel S, Durox D, Schuller T, Bourgouin JF, Moeck JP (2014) Dynamics of swirling flames. Annu Rev Fluid Mech 46(1):147–173.  https://doi.org/10.1146/annurev-fluid-010313-141300
  12. Chakravarthy SR, Sampath R, Ramanan V (2016) Dynamics and diagnostics of flame-acoustic interactions. Combust Sci Technol 189(3):395–437.  https://doi.org/10.1080/00102202.2016.1202938
  13. Chiu H, Summerfield M (1974) Theory of combustion noise. Acta Astronaut 1(7–8):967–984Google Scholar
  14. Chiu H, Plett E, Summerfield M (1973) Noise generation by ducted combustion systems. In: Aeroacoustics Conference, p 1024Google Scholar
  15. Clavin P, Kim JS, Williams FA (1994) Turbulence-induced noise effects on high-frequency combustion instabilities. Combust Sci Technol 96(1–3):61–84.  https://doi.org/10.1080/00102209408935347
  16. Coullet P, Elphick C, Tirapegui E (1985) Normal form of a hopf bifurcation with noise. Phys Lett A 111(6):277–282MathSciNetCrossRefGoogle Scholar
  17. Crocco L, Cheng SI (1956) Theory of combustion instability in liquid propellant rocket motors. Princton Univ NJ, Tech. repGoogle Scholar
  18. Culick F, Paparizos L, Sterling J, Burnley V (1992) Combustion noise and combustion instabilities in propulsion systems. Tech. rep, Advisory Group for Aerospace Research and Development, North Atlantic TreatyGoogle Scholar
  19. Culick FEC (1971) Non-linear growth and limiting amplitude of acoustic oscillations in combustion chambers. Combust Sci Technol 3(1):1–16.  https://doi.org/10.1080/00102207108952266
  20. Culick FEC, Yang V (1995) Instability phenomenology and case studies: overview of combustion instabilities in liquid-propellant rocket engines. In: Anderson WE, Yang V (eds) Liquid rocket engine combustion instability. American Institute of Aeronautics and Astronautics, pp 3–37.  https://doi.org/10.2514/5.9781600866371.0003.0037
  21. Douglass JK, Wilkens L, Pantazelou E, Moss F (1993) Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365(6444):337CrossRefGoogle Scholar
  22. Dowling AP (1999) A kinematic model of a ducted flame. J Fluid Mech 394:51–72.  https://doi.org/10.1017/s0022112099005686
  23. Dowling AP, Mahmoudi Y (2015) Combustion noise. Proc Combust Inst 35(1):65–100.  https://doi.org/10.1016/j.proci.2014.08.016
  24. Elias I (1959) Acoustical resonances produced by combustion of a fuel-air mixture in a rectangular duct. J Acoust Soc Am 31(3):296–304.  https://doi.org/10.1121/1.1907715
  25. Feldman KT Jr (1968) Review of the literature on Rijke thermoacoustic phenomena. J Sound Vibr 7(1):83–89CrossRefGoogle Scholar
  26. George NB, Unni V, Raghunathan M, Sujith R (2016) Effect of varying turbulence intensity on thermoacoustic instability in a partially pre-mixed combustor. In: ICSV, p 23Google Scholar
  27. Gopalakrishnan E, Sujith R (2015) Effect of external noise on the hysteresis characteristics of a thermoacoustic system. J Fluid Mech 776:334–353CrossRefGoogle Scholar
  28. Gopalakrishnan E, Tony J, Sreelekha E, Sujith R (2016) Stochastic bifurcations in a prototypical thermoacoustic system. Phys Rev E 94(2):022203MathSciNetCrossRefGoogle Scholar
  29. Gupta V, Saurabh A, Paschereit CO, Kabiraj L (2017) Numerical results on noise-induced dynamics in the subthreshold regime for thermoacoustic systems. J Sound Vib 390:55–66CrossRefGoogle Scholar
  30. Jegadeesan V, Sujith R (2013) Experimental investigation of noise induced triggering in thermoacoustic systems. Proc Combust Inst 34(2):3175–3183CrossRefGoogle Scholar
  31. Kabiraj L, Sujith RI (2011) Investigation of subcritical instability in ducted premixed flames. In: Volume 2: combustion, fuels and emissions, Parts A and B, ASME.  https://doi.org/10.1115/gt2011-46155
  32. Kabiraj L, Saurabh A, Wahi P, Sujith RI (2012) Route to chaos for combustion instability in ducted laminar premixed flames. Chaos: Interdisc J Nonlinear Sci 22(2):023129.  https://doi.org/10.1063/1.4718725
  33. Kabiraj L, Saurabh A, Karimi N, Sailor A, Mastorakos E, Dowling AP, Paschereit CO (2015a) Chaos: Interdisc J Nonlinear Sci 25(2):023101.  https://doi.org/10.1063/1.4906943
  34. Kabiraj L, Steinert R, Saurabh A, Paschereit CO (2015b) Coherence resonance in a thermoacoustic system. Phys Rev E 92(4):042909CrossRefGoogle Scholar
  35. Kiss IZ, Hudson JL, Santos GJE, Parmananda P (2003) Experiments on coherence resonance: noisy precursors to Hopf bifurcations. Phys Rev E 67(3):035201CrossRefGoogle Scholar
  36. Li X, Zhao D, Shi B (2019) Coherence resonance and stochastic bifurcation behaviors of simplified standing-wave thermoacoustic systems. J Acoust Soc Am 145(2):692–702CrossRefGoogle Scholar
  37. Lieuwen T (2001) Phase drift characteristics of self-excited, combustion-driven oscillations. J Sound Vib 242(5):893–905MathSciNetCrossRefGoogle Scholar
  38. Lieuwen TC, Banaszuk A (2005) Background noise effects on combustor stability. J Propul Power 21(1):25–31CrossRefGoogle Scholar
  39. Matveev K, Culick F (2003) A study of the transition to instability in a rijke tube with axial temperature gradient. J Sound Vib 264(3):689–706.  https://doi.org/10.1016/s0022-460x(02)01217-8
  40. Nayfeh AH, Balachandran B (1995) Applied nonlinear dynamics. Wiley, pp 1–34Google Scholar
  41. Neiman A, Saparin PI, Stone L (1997) Coherence resonance at noisy precursors of bifurcations in nonlinear dynamical systems. Phys Rev E 56(1):270CrossRefGoogle Scholar
  42. Noiray N, Denisov A (2017) A method to identify thermoacoustic growth rates in combustion chambers from dynamic pressure time series. Proc Combust Inst 36(3):3843–3850CrossRefGoogle Scholar
  43. Noiray N, Schuermans B (2013a) Deterministic quantities characterizing noise driven Hopf bifurcations in gas turbine combustors. Int J Non-Linear Mech 50:152–163Google Scholar
  44. Noiray N, Schuermans B (2013b) On the dynamic nature of azimuthal thermoacoustic modes in annular gas turbine combustion chambers. Proc Roy Soc A Math, Phys Eng Sci 469(2151):20120535–20120535.  https://doi.org/10.1098/rspa.2012.0535
  45. Noiray N, Schuermans B (2013c) On the dynamic nature of azimuthal thermoacoustic modes in annular gas turbine combustion chambers. Proc Roy Soc A Math Phys Eng Sci 469(2151):20120535–20120535.  https://doi.org/10.1098/rspa.2012.0535
  46. Noiray N, Durox D, Schuller T, Candel S (2008) A unified framework for nonlinear combustion instability analysis based on the flame describing function. J Fluid Mech 615:139.  https://doi.org/10.1017/s0022112008003613
  47. O’Connor J, Acharya V, Lieuwen T (2015) Transverse combustion instabilities: acoustic, fluid mechanic, and flame processes. Prog Energy Combust Sci 49:1–39.  https://doi.org/10.1016/j.pecs.2015.01.001
  48. Pikovsky AS, Kurths J (1997) Coherence resonance in a noise-driven excitable system. Phys Rev Lett 78(5):775MathSciNetCrossRefGoogle Scholar
  49. Putnam AA (1971) Combustion-driven oscillations in industry. Elsevier Publishing CompanyGoogle Scholar
  50. Raun R, Beckstead M, Finlinson J, Brooks K (1993) A review of Rijke tubes, Rijke burners and related devices. Prog Energy Combust Sci 19(4):313–364.  https://doi.org/10.1016/0360-1285(93)90007-2
  51. Rayleigh L (1878) The explanation of certain acoustical phenomena. Roy Inst Proc 8:536–542, https://ci.nii.ac.jp/naid/10029867839/en/
  52. Sastry S, Hijab O (1981) Bifurcation in the presence of small noise. Syst Control Lett 1(3):159–167MathSciNetCrossRefGoogle Scholar
  53. Saurabh A, Kabiraj L, Steinert R, Paschereit CO (2016) Noise-induced dynamics in the subthreshold region in thermoacoustic systems. J Eng Gas Turbines Power 139(3):031508.  https://doi.org/10.1115/1.4034544
  54. Seywert CN (2001) Combustion instabilities: issues in modeling and control. PhD thesis, California Institute of TechnologyGoogle Scholar
  55. Shreekrishna S, Acharya V, Lieuwen T (2013) Flame response to equivalence ratio fluctuations—relationship between chemiluminescence and heat release. Int J Spray Combust Dyn 5(4):329–358.  https://doi.org/10.1260/1756-8277.5.4.329
  56. Sterling J, Zukoski E (1991) Nonlinear dynamics of laboratory combustor pressure oscillations. Combust Sci Technol 77(4–6):225–238CrossRefGoogle Scholar
  57. Strahle WC (1978) Combustion noise. Prog Energy Combust Sci 4(3):157–176.  https://doi.org/10.1016/0360-1285(78)90002-3
  58. Stratonovich RL (1967) Topics in the theory of random noise, vol 2. CRC PressGoogle Scholar
  59. Swift GW (1988) Thermoacoustic engines. J Acoust Soc Am 84(4):1145–1180.  https://doi.org/10.1121/1.396617
  60. Tam CKW, Bake F, Hultgren LS, Poinsot T (2019) Combustion noise: modeling and prediction. CEAS Aeronaut J 10(1):101–122.  https://doi.org/10.1007/s13272-019-00377-2
  61. Ushakov O, Wünsche HJ, Henneberger F, Khovanov I, Schimansky-Geier L, Zaks M (2005) Coherence resonance near a hopf bifurcation. Phys Rev Lett 95(12):123903CrossRefGoogle Scholar
  62. Waugh I, Geuß M, Juniper M (2011) Triggering, bypass transition and the effect of noise on a linearly stable thermoacoustic system. Proc Combust Inst 33(2):2945–2952CrossRefGoogle Scholar
  63. Waugh IC, Juniper MP (2011) Triggering in a thermoacoustic system with stochastic noise. Int J Spray Combust Dyn 3(3):225–241CrossRefGoogle Scholar
  64. Wellens T, Shatokhin V, Buchleitner A (2003) Stochastic resonance. Rep Prog Phys 67(1):45CrossRefGoogle Scholar
  65. Zakharova A, Vadivasova T, Anishchenko V, Koseska A, Kurths J (2010) Stochastic bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator. Phys Rev E 81(1):011106CrossRefGoogle Scholar
  66. Zinn BT, Lieuwen TC (2006) Combustion instabilities: Basic concepts. In: Lieuwen TC, Yang V (eds) Combustion instabilities in gas turbine engines. American Institute of Aeronautics and Astronautics, pp 3–26.  https://doi.org/10.2514/5.9781600866807.0003.0026
  67. Zinn BT, Powell EA (1971) Nonlinear combustion instability in liquid-propellant rocket engines. Symp (International) Combust 13(1):491–503.  https://doi.org/10.1016/s0082-0784(71)80051-6

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.CDC Lab, Department of Mechanical EngineeringIIT RoparRupnagarIndia
  2. 2.Department of Mechanical EngineeringIIT KanpurKanpurIndia

Personalised recommendations