Skip to main content

Neurodevelopment and Neurobehavioral Disorders in Relation to Developmental Exposures

  • Chapter
  • First Online:
Health Impacts of Developmental Exposure to Environmental Chemicals

Abstract

The environment is now known to be an important determinant of child health, with increasing evidence that some chemicals are particularly toxic to the human brain. More than 140,000 new chemicals have been synthesized since 1950. In this chapter, we review the most studied neurotoxicants for their associations with neurodevelopment and the potential mechanisms of action. We describe the societal effects of such contaminants, and discuss the main challenges facing studies investigating potential neurodevelopmental effects of chemicals. Finally, we provide future directions for the next generation of developmental neuroepidemiology studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harris JC. New classification for neurodevelopmental disorders in DSM-5. Curr Opin Psychiatry. 2014;27(2):95–7.

    Article  PubMed  Google Scholar 

  2. Danielson ML, Bitsko RH, Ghandour RM, Holbrook JR, Kogan MD, Blumberg SJ. Prevalence of parent-reported ADHD diagnosis and associated treatment among U.S. children and adolescents, 2016. J Clin Child Adolesc Psychol. 2018;47(2):199–212.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zablotsky B, Black LI, Blumberg SJ. Estimated prevalence of children with diagnosed developmental disabilities in the United States, 2014-2016. NCHS Data Brief. 2017;291:1–8.

    Google Scholar 

  4. Kogan MD, Vladutiu CJ, Schieve LA, Ghandour RM, Blumberg SJ, Zablotsky B, et al. The prevalence of parent-reported autism spectrum disorder among US children. Pediatrics. 2018;142(6):e20174161.

    Article  PubMed  Google Scholar 

  5. Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu NN, et al. The Lancet Commission on pollution and health. Lancet. 2017;391(10119):462–512.

    Article  PubMed  Google Scholar 

  6. Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014;13(3):330–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mattison DR. Environmental exposures and development. Curr Opin Pediatr. 2010;22(2):208–18.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zwicker JG, Harris SR. Quality of life of formerly preterm and very low birth weight infants from preschool age to adulthood: a systematic review. Pediatrics. 2008;121(2):e366–76.

    Article  PubMed  Google Scholar 

  9. Moore T, Hennessy EM, Myles J, Johnson SJ, Draper ES, Costeloe KL, et al. Neurological and developmental outcome in extremely preterm children born in England in 1995 and 2006: the epicure studies. BMJ. 2012;68:345.

    Google Scholar 

  10. Rauh VA, Margolis AE. Research Review: environmental exposures, neurodevelopment and child mental health – new paradigms for the study of brain and behavioral effects. J Child Psychol Psychiatry. 2016;57(7):775–93.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bellinger D, Leviton A, Allred E, Rabinowitz M. Pre- and postnatal lead exposure and behavior problems in school-aged children. Environ Res. 1994;66(1):12–30.

    Article  CAS  PubMed  Google Scholar 

  12. Bellinger DC. Environmental chemical exposures and neurodevelopmental impairments in children. Pediatr Med. 2018;2018:1.

    Google Scholar 

  13. Chen A, Cai B, Dietrich KN, Radcliffe J, Rogan WJ. Lead exposure, IQ, and behavior in urban 5- to 7-year-olds: does lead affect behavior only by lowering IQ? Pediatrics. 2007;119(3):e650–e8.

    Article  PubMed  Google Scholar 

  14. Eubig PA, Aguiar A, Schantz SL. Lead and PCBs as risk factors for attention deficit/hyperactivity disorder. Environ Health Perspect. 2010;118(12):1654–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nkomo P, Naicker N, Mathee A, Galpin J, Richter LM, Norris SA. The association between environmental lead exposure with aggressive behavior, and dimensionality of direct and indirect aggression during mid-adolescence: Birth to Twenty Plus Cohort. Sci Total Environ. 2018;612:472–9.

    Article  CAS  PubMed  Google Scholar 

  16. Wright JP, Dietrich KN, Ris MD, Hornung RW, Wessel SD, Lanphear BP, et al. Association of prenatal and childhood blood lead concentrations with criminal arrests in early adulthood. PLoS Med. 2008;5(5):e101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Guilarte TR. Manganese neurotoxicity: new perspectives from behavioral, neuroimaging, and neuropathological studies in humans and non-human primates. Front Aging Neurosci. 2013;5:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fechter LD. Distribution of manganese in development. Neurotoxicology. 1999;20(2-3):197–201.

    CAS  PubMed  Google Scholar 

  19. Takser L, Lafond J, Bouchard M, St-Amour G, Mergler D. Manganese levels during pregnancy and at birth: relation to environmental factors and smoking in a Southwest Quebec population. Environ Res. 2004;95(2):119–25.

    Article  CAS  PubMed  Google Scholar 

  20. Khan K, Wasserman GA, Liu X, Ahmed E, Parvez F, Slavkovich V, et al. Manganese exposure from drinking water and children’s academic achievement. Neurotoxicology. 2012;33(1):91–7.

    Article  CAS  PubMed  Google Scholar 

  21. Bouchard M, Laforest F, Vandelac L, Bellinger D, Mergler D. Hair manganese and hyperactive behaviors: pilot study of school-age children exposed through tap water. Environ Health Perspect. 2007;115(1):122–7.

    Article  CAS  PubMed  Google Scholar 

  22. Carvalho CF, Oulhote Y, Martorelli M, Carvalho CO, Menezes-Filho JA, Argollo N, et al. Environmental manganese exposure and associations with memory, executive functions, and hyperactivity in Brazilian children. Neurotoxicology. 2018;69:253–9.

    Article  PubMed  CAS  Google Scholar 

  23. Oulhote Y, Mergler D, Barbeau B, Bellinger DC, Bouffard T, Brodeur ME, et al. Neurobehavioral function in school-age children exposed to manganese in drinking water. Environ Health Perspect. 2014;122(12):1343–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ortiz-Romo N, Drucker-Colín R, Guarneros M, Alcaraz-Zubeldia M, Hudson R. Nonoccupational environmental exposure to manganese is linked to deficits in peripheral and central olfactory function. Chem Senses. 2013;38(9):783–91.

    Article  PubMed  CAS  Google Scholar 

  25. Carvalho CF, Menezes-Filho JA, de Matos VP, Bessa JR, Coelho-Santos J, Viana GF, et al. Elevated airborne manganese and low executive function in school-aged children in Brazil. Neurotoxicology. 2014;45:301–8.

    Article  CAS  PubMed  Google Scholar 

  26. Tyler CR, Allan AM. The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: a review. Curr Environ Health Rep. 2014;1(2):132–47.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sanchez-Pena LC, Petrosyan P, Morales M, Gonzalez NB, Gutierrez-Ospina G, Del Razo LM, et al. Arsenic species, AS3MT amount, and AS3MT gene expression in different brain regions of mouse exposed to arsenite. Environ Res. 2010;110(5):428–34.

    Article  CAS  PubMed  Google Scholar 

  28. Wasserman GA, Liu X, Parvez F, Ahsan H, Factor-Litvak P, van Geen A, et al. Water arsenic exposure and children’s intellectual function in Araihazar, Bangladesh. Environ Health Perspect. 2004;112(13):1329–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wasserman GA, Liu X, Parvez F, Factor-Litvak P, Kline J, Siddique AB, et al. Child intelligence and reductions in water arsenic and manganese: a two-year follow-up study in Bangladesh. Environ Health Perspect. 2016;124(7):1114–20.

    Article  CAS  PubMed  Google Scholar 

  30. Rodriguez-Barranco M, Lacasana M, Aguilar-Garduno C, Alguacil J, Gil F, Gonzalez-Alzaga B, et al. Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: a systematic review and meta-analysis. Sci Total Environ. 2013;454-455:562–77.

    Article  CAS  PubMed  Google Scholar 

  31. Moneim AEA. Mercury-induced neurotoxicity and neuroprotective effects of berberine. Neural Regen Res. 2015;10(6):881–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Debes F, Budtz-Jorgensen E, Weihe P, White RF, Grandjean P. Impact of prenatal methylmercury exposure on neurobehavioral function at age 14 years. Neurotoxicol Teratol. 2006;28(5):536–47.

    Article  CAS  PubMed  Google Scholar 

  33. Oulhote Y, Debes F, Vestergaard S, Weihe P, Grandjean P. Aerobic fitness and neurocognitive function scores in young faroese adults and potential modification by prenatal methylmercury exposure. Environ Health Perspect. 2017;125(4):677–83.

    Article  CAS  PubMed  Google Scholar 

  34. Grandjean P, White RF. Effects of methylmercury exposure on neurodevelopment. JAMA. 1999;281(10):896.

    Article  CAS  PubMed  Google Scholar 

  35. Hopf NB, Ruder AM, Succop P. Background levels of polychlorinated biphenyls in the U.S. population. Sci Total Environ. 2009;407(24):6109–19.

    Article  CAS  PubMed  Google Scholar 

  36. Faroon O, Ruiz P. Polychlorinated biphenyls: new evidence from the last decade. Toxicol Ind Health. 2016;32(11):1825–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berghuis SA, Bos AF, Sauer PJJ, Roze E. Developmental neurotoxicity of persistent organic pollutants: an update on childhood outcome. Arch Toxicol. 2015;89(5):687–709.

    Article  CAS  PubMed  Google Scholar 

  38. Vrijheid M, Casas M, Gascon M, Valvi D, Nieuwenhuijsen M. Environmental pollutants and child health—a review of recent concerns. Int J Hyg Environ Health. 2016;219(4):331–42.

    Article  CAS  PubMed  Google Scholar 

  39. Lyall K, Schmidt RJ, Hertz-Picciotto I. Maternal lifestyle and environmental risk factors for autism spectrum disorders. Int J Epidemiol. 2014;43(2):443–64.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rossignol DA, Genuis SJ, Frye RE. Environmental toxicants and autism spectrum disorders: a systematic review. Transl Psychiatry. 2014;4:e360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Costa LG, Giordano G. Developmental neurotoxicity of polybrominated diphenyl ether (PBDE) flame retardants. Neurotoxicology. 2007;28(6):1047–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hendriks H, Westerink R. Neurotoxicity and risk assessment of brominated and alternative flame retardants. Neurotoxicol Teratol. 2015;52(Pt B):248–69.

    Article  CAS  PubMed  Google Scholar 

  43. Herbstman JB, Sjödin A, Kurzon M, Lederman SA, Jones RS, Rauh V, et al. Prenatal exposure to PBDEs and neurodevelopment. Environ Health Perspect. 2010;118(5):712–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hudson-Hanley B, Irvin V, Flay B, MacDonald M, Kile ML. Prenatal PBDE exposure and neurodevelopment in children 7 years old or younger: a systematic review and meta-analysis. Curr Epidemiol Rep. 2018;5(1):46–59.

    Article  Google Scholar 

  45. Sagiv SK, Kogut K, Gaspar FW, Gunier RB, Harley KG, Parra K, et al. Prenatal and childhood polybrominated diphenyl ether (PBDE) exposure and attention and executive function at 9–12 years of age. Neurotoxicol Teratol. 2015;52:151–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Oulhote Y, Tremblay E, Arbuckle TE, Fraser WD, Lemelin JP, Seguin JR, et al. Prenatal exposure to polybrominated diphenyl ethers and predisposition to frustration at 7 months: results from the MIREC study. Environ Int. 2018;119:79–88.

    Article  CAS  PubMed  Google Scholar 

  47. Herbstman JB, Mall JK. Developmental exposure to polybrominated diphenyl ethers and neurodevelopment. Curr Environ Health Rep. 2014;1(2):101–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bouchard MF, Chevrier J, Harley KG, Kogut K, Vedar M, Calderon N, et al. Prenatal exposure to organophosphate pesticides and IQ in 7-year-old children. Environ Health Perspect. 2011;119(8):1189–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Engel Stephanie M, Wetmur J, Chen J, Zhu C, Barr Dana B, Canfield Richard L, et al. Prenatal exposure to organophosphates, paraoxonase 1, and cognitive development in childhood. Environ Health Perspect. 2011;119(8):1182–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rauh V, Arunajadai S, Horton M, Perera F, Hoepner L, Barr Dana B, et al. Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environ Health Perspect. 2011;119(8):1196–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Eskenazi B, Marks AR, Bradman A, Harley K, Barr DB, Johnson C, et al. Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environ Health Perspect. 2007;115(5):792–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Engel SM, Berkowitz GS, Barr DB, Teitelbaum SL, Siskind J, Meisel SJ, et al. Prenatal organophosphate metabolite and organochlorine levels and performance on the Brazelton Neonatal Behavioral Assessment Scale in a multiethnic pregnancy cohort. Am J Epidemiol. 2007;165(12):1397–404.

    Article  PubMed  Google Scholar 

  53. Petit C, Chevrier C, Durand G, Monfort C, Rouget F, Garlantezec R, et al. Impact on fetal growth of prenatal exposure to pesticides due to agricultural activities: a prospective cohort study in Brittany, France. Environ Health. 2010;9:71.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Torres-Sanchez L, Rothenberg SJ, Schnaas L, Cebrian ME, Osorio E, Del Carmen HM, et al. In utero p,p′-DDE exposure and infant neurodevelopment: a perinatal cohort in Mexico. Environ Health Perspect. 2007;115(3):435–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Torres-Sánchez L, Schnaas L, Rothenberg SJ, Cebrián ME, Osorio-Valencia E, Hernández MDC, et al. Prenatal p,p′-DDE exposure and neurodevelopment among children 3.5-5 years of age. Environ Health Perspect. 2013;121(2):263–8.

    Article  PubMed  CAS  Google Scholar 

  56. Eskenazi B, Marks AR, Bradman A, Fenster L, Johnson C, Barr DB, et al. In utero exposure to dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyldichloroethylene (DDE) and neurodevelopment among young Mexican American children. Pediatrics. 2006;118(1):233–41.

    Article  PubMed  Google Scholar 

  57. Eskenazi B, An S, Rauch SA, Coker ES, Maphula A, Obida M, et al. Prenatal exposure to DDT and pyrethroids for malaria control and child neurodevelopment: The VHEMBE Cohort, South Africa. Environ Health Perspect. 2018;126(4):047004.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gaspar FW, Harley KG, Kogut K, Chevrier J, Mora AM, Sjodin A, et al. Prenatal DDT and DDE exposure and child IQ in the CHAMACOS cohort. Environ Int. 2015;85:206–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pan IJ, Daniels JL, Goldman BD, Herring AH, Siega-Riz AM, Rogan WJ. Lactational exposure to polychlorinated biphenyls, dichlorodiphenyltrichloroethane, and dichlorodiphenyldichloroethylene and infant neurodevelopment: an analysis of the pregnancy, infection, and nutrition babies study. Environ Health Perspect. 2009;117(3):488–94.

    Article  CAS  PubMed  Google Scholar 

  60. Jusko TA, Klebanoff MA, Brock JW, Longnecker MP. In-utero exposure to dichlorodiphenyltrichloroethane and cognitive development among infants and school-aged children. Epidemiology. 2012;23(5):689–98.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Barlow SM, Sullivan FM, Lines J. Risk assessment of the use of deltamethrin on bednets for the prevention of malaria. Food Chem Toxicol. 2001;39(5):407–22.

    Article  CAS  PubMed  Google Scholar 

  62. Oulhote Y, Bouchard MF. Urinary metabolites of organophosphate and pyrethroid pesticides and behavioral problems in Canadian children. Environ Health Perspect. 2013;121(11-12):1378–84.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Viel JF, Warembourg C, Le Maner-Idrissi G, Lacroix A, Limon G, Rouget F, et al. Pyrethroid insecticide exposure and cognitive developmental disabilities in children: The PELAGIE Mother-Child Cohort. Environ Int. 2015;82:69–75.

    Article  CAS  PubMed  Google Scholar 

  64. Xue Z, Li X, Su Q, Xu L, Zhang P, Kong Z, et al. Effect of synthetic pyrethroid pesticide exposure during pregnancy on the growth and development of infants. Asia Pac J Public Health. 2013;25(4 Suppl):72s–9s.

    Article  PubMed  Google Scholar 

  65. Watkins DJ, Fortenberry GZ, Sánchez BN, Barr DB, Panuwet P, Schnaas L, et al. Urinary 3-phenoxybenzoic acid (3-PBA) levels among pregnant women in Mexico City: distribution and relationships with child neurodevelopment. Environ Res. 2016;147:307–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Viel JF, Rouget F, Warembourg C, Monfort C, Limon G, Cordier S, et al. Behavioural disorders in 6-year-old children and pyrethroid insecticide exposure: The PELAGIE Mother-Child Cohort. Occup Environ Med. 2017;74(4):275–81.

    Article  PubMed  Google Scholar 

  67. Furlong MA, Barr DB, Wolff MS, Engel SM. Prenatal exposure to pyrethroid pesticides and childhood behavior and executive functioning. Neurotoxicology. 2017;62:231–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Factor-Litvak P, Insel B, Calafat AM, Liu X, Perera F, Rauh VA, et al. Persistent associations between maternal prenatal exposure to phthalates on child IQ at age 7 years. PLoS One. 2014;9(12):e114003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Arbuckle TE, Davis K, Boylan K, Fisher M, Fu J. Bisphenol A, phthalates and lead and learning and behavioral problems in Canadian children 6–11 years of age: CHMS 2007–2009. Neurotoxicology. 2016;54:89–98.

    Article  CAS  PubMed  Google Scholar 

  70. Kim BN, Cho SC, Kim Y, Shin MS, Yoo HJ, Kim JW, et al. Phthalates exposure and attention-deficit/hyperactivity disorder in school-age children. Biol Psychiatry. 2009;66(10):958–63.

    Article  CAS  PubMed  Google Scholar 

  71. Miodovnik A, Engel SM, Zhu C, Ye X, Soorya LV, Silva MJ, et al. Endocrine disruptors and childhood social impairment. Neurotoxicology. 2011;32(2):261–7.

    Article  CAS  PubMed  Google Scholar 

  72. Harley KG, Gunier RB, Kogut K, Johnson C, Bradman A, Calafat AM, et al. Prenatal and early childhood bisphenol A concentrations and behavior in school-aged children. Environ Res. 2013;126:43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Roen EL, Wang Y, Calafat AM, Wang S, Margolis A, Herbstman J, et al. Bisphenol A exposure and behavioral problems among inner city children at 7–9 years of age. Environ Res. 2015;142:739–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Evans SF, Kobrosly RW, Barrett ES, Thurston SW, Calafat AM, Weiss B, et al. Prenatal bisphenol A exposure and maternally reported behavior in boys and girls. Neurotoxicology. 2014;45:91–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Casas M, Forns J, Martinez D, Avella-Garcia C, Valvi D, Ballesteros-Gomez A, et al. Exposure to bisphenol A during pregnancy and child neuropsychological development in the INMA-Sabadell cohort. Environ Res. 2015;142:671–9.

    Article  CAS  PubMed  Google Scholar 

  76. Braun JM. Early-life exposure to EDCs: role in childhood obesity and neurodevelopment. Nat Rev Endocrinol. 2016;13:161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Braun JM, Kalkbrenner AE, Just AC, Yolton K, Calafat AM, Sjodin A, et al. Gestational exposure to endocrine-disrupting chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: The HOME Study. Environ Health Perspect. 2014;122(5):513–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Steinmaus CM. Perchlorate in water supplies: sources, exposures, and health effects. Curr Environ Health Rep. 2016;3(2):136–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Blount BC, Valentin-Blasini L. Biomonitoring as a method for assessing exposure to perchlorate. Thyroid. 2007;17(9):837–41.

    Article  CAS  PubMed  Google Scholar 

  80. Taylor PN, Okosieme OE, Murphy R, Hales C, Chiusano E, Maina A, et al. Maternal perchlorate levels in women with borderline thyroid function during pregnancy and the cognitive development of their offspring: data from the controlled antenatal thyroid study. J Clin Endocrinol Metabol. 2014;99(11):4291–8.

    Article  CAS  Google Scholar 

  81. Fry RC, Navasumrit P, Valiathan C, Svensson JP, Hogan BJ, Luo M, et al. Activation of inflammation/NF-kappaB signaling in infants born to arsenic-exposed mothers. PLoS Genet. 2007;3(11):e207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Dietert RR. Misregulated inflammation as an outcome of early-life exposure to endocrine-disrupting chemicals. Rev Environ Health. 2012;27(2-3):117–31.

    Article  CAS  PubMed  Google Scholar 

  83. Sirivarasai J, Wananukul W, Kaojarern S, Chanprasertyothin S, Thongmung N, Ratanachaiwong W, et al. Association between inflammatory marker, environmental lead exposure, and glutathione S-transferase gene. Biomed Res Int. 2013;2013:474963.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Morris RG, Anderson E, Lynch GS, Baudry M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature. 1986;319(6056):774–6.

    Article  CAS  PubMed  Google Scholar 

  85. Toscano CD, Guilarte TR. Lead neurotoxicity: from exposure to molecular effects. Brain Res. 2005;49(3):529–54.

    Article  CAS  Google Scholar 

  86. Neal AP, Guilarte TR. Mechanisms of lead and manganese neurotoxicity. Toxicol Res. 2013;2(2):99–114.

    Article  CAS  Google Scholar 

  87. Farina M, Rocha JBT, Aschner M. Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci. 2011;89(15-16):555–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gavin CE, Gunter KK, Gunter TE. Mn2+ sequestration by mitochondria and inhibition of oxidative phosphorylation. Toxicol Appl Pharmacol. 1992;115(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  89. Burton NC, Guilarte TR. Manganese neurotoxicity: lessons learned from longitudinal studies in nonhuman primates. Environ Health Perspect. 2009;117(3):325–32.

    Article  CAS  PubMed  Google Scholar 

  90. Martinez L, Jimenez V, Garcia-Sepulveda C, Ceballos F, Delgado JM, Nino-Moreno P, et al. Impact of early developmental arsenic exposure on promotor CpG-island methylation of genes involved in neuronal plasticity. Neurochem Int. 2011;58(5):574–81.

    Article  CAS  PubMed  Google Scholar 

  91. Martinez-Finley EJ, Ali AM, Allan AM. Learning deficits in C57BL/6J mice following perinatal arsenic exposure: consequence of lower corticosterone receptor levels? Pharmacol Biochem Behav. 2009;94(2):271–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rodriguez VM, Carrizales L, Mendoza MS, Fajardo OR, Giordano M. Effects of sodium arsenite exposure on development and behavior in the rat. Neurotoxicol Teratol. 2002;24(6):743–50.

    Article  CAS  PubMed  Google Scholar 

  93. Kruger K, Binding N, Straub H, Musshoff U. Effects of arsenite on long-term potentiation in hippocampal slices from young and adult rats. Toxicol Lett. 2006;165(2):167–73.

    Article  PubMed  CAS  Google Scholar 

  94. Gilden RC, Huffling K, Sattler B. Pesticides and health risks. JOGNN. 2010;39(1):103–10.

    Article  PubMed  Google Scholar 

  95. Costa LG. Interactions of neurotoxicants with neurotransmitter systems. Toxicology. 1988;49(2):359–66.

    Article  CAS  PubMed  Google Scholar 

  96. Costa LG, Giordano G, Guizzetti M, Vitalone A. Neurotoxicity of pesticides: a brief review. Front Biosci. 2008;13:1240–9.

    Article  CAS  PubMed  Google Scholar 

  97. Vijverberg HP, van der Zalm JM, van der Bercken J. Similar mode of action of pyrethroids and DDT on sodium channel gating in myelinated nerves. Nature. 1982;295(5850):601–3.

    Article  CAS  PubMed  Google Scholar 

  98. Tilson HA, Kodavanti PR. The neurotoxicity of polychlorinated biphenyls. Neurotoxicology. 1998;19(4-5):517–25.

    CAS  PubMed  Google Scholar 

  99. Schantz SL. Developmental neurotoxicity of PCBs in humans: what do we know and where do we go from here? Neurotoxicol Teratol. 1996;18(3):217–27.

    Article  CAS  PubMed  Google Scholar 

  100. Ribas-Fitó N, Sala M, Kogevinas M, Sunyer J. Polychlorinated biphenyls (PCBs) and neurological development in children: a systematic review. J Epidemiol Community Health. 2001;55(8):537–46.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Oulhote Y, Chevrier J, Bouchard MF. Exposure to polybrominated diphenyl ethers (PBDEs) and hypothyroidism in Canadian women. J Clin Endocrinol Metab. 2016;101(2):590–8.

    Article  CAS  PubMed  Google Scholar 

  102. Chevrier J, Harley KG, Bradman A, Gharbi M, Sjodin A, Eskenazi B. Polybrominated diphenyl ether (PBDE) flame retardants and thyroid hormone during pregnancy. Environ Health Perspect. 2010;118(10):1444–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Costa LG, de Laat R, Tagliaferri S, Pellacani C. A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity. Toxicol Lett. 2014;230(2):282–94.

    Article  CAS  PubMed  Google Scholar 

  104. Blanco J, Mulero M, Lopez M, Domingo JL, Sanchez DJ. BDE-99 deregulates BDNF, Bcl-2 and the mRNA expression of thyroid receptor isoforms in rat cerebellar granular neurons. Toxicology. 2011;290(2-3):305–11.

    Article  PubMed  CAS  Google Scholar 

  105. Tagliaferri S, Caglieri A, Goldoni M, Pinelli S, Alinovi R, Poli D, et al. Low concentrations of the brominated flame retardants BDE-47 and BDE-99 induce synergistic oxidative stress-mediated neurotoxicity in human neuroblastoma cells. Toxicol In Vitro. 2010;24(1):116–22.

    Article  CAS  PubMed  Google Scholar 

  106. Madia F, Giordano G, Fattori V, Vitalone A, Branchi I, Capone F, et al. Differential in vitro neurotoxicity of the flame retardant PBDE-99 and of the PCB Aroclor 1254 in human astrocytoma cells. Toxicol Lett. 2004;154(1-2):11–21.

    Article  CAS  PubMed  Google Scholar 

  107. Mariussen E, Fonnum F. Neurochemical targets and behavioral effects of organohalogen compounds: an update. Crit Rev Toxicol. 2006;36(3):253–89.

    Article  CAS  PubMed  Google Scholar 

  108. Talsness CE, Andrade AJM, Kuriyama SN, Taylor JA, vom Saal FS. Components of plastic: experimental studies in animals and relevance for human health. Philos Trans R Soc London Ser B. 2009;364(1526):2079–96.

    Article  CAS  Google Scholar 

  109. Romano ME, Eliot MN, Zoeller RT, Hoofnagle AN, Calafat AM, Karagas MR, et al. Maternal urinary phthalate metabolites during pregnancy and thyroid hormone concentrations in maternal and cord sera: The HOME Study. Int J Hyg Environ Health. 2018;221(4):623–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang X, Chang H, Wiseman S, He Y, Higley E, Jones P, et al. Bisphenol A disrupts steroidogenesis in human H295R cells. Toxicol Sci. 2011;121(2):320–7.

    Article  CAS  PubMed  Google Scholar 

  111. Gentilcore D, Porreca I, Rizzo F, Ganbaatar E, Carchia E, Mallardo M, et al. Bisphenol A interferes with thyroid specific gene expression. Toxicology. 2013;304:21–31.

    Article  CAS  PubMed  Google Scholar 

  112. Blount BC, Pirkle JL, Osterloh JD, Valentin-Blasini L, Caldwell KL. Urinary perchlorate and thyroid hormone levels in adolescent and adult men and women living in the United States. Environ Health Perspect. 2006;114(12):1865–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Charatcharoenwitthaya N, Ongphiphadhanakul B, Pearce EN, Somprasit C, Chanthasenanont A, He X, et al. The association between perchlorate and thiocyanate exposure and thyroid function in first-trimester pregnant Thai women. J Clin Endocrinol Metabol. 2014;99(7):2365–71.

    Article  CAS  Google Scholar 

  114. Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Gagnon J, et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med. 1999;341(8):549–55.

    Article  CAS  PubMed  Google Scholar 

  115. Li Y, Shan Z, Teng W, Yu X, Li Y, Fan C, et al. Abnormalities of maternal thyroid function during pregnancy affect neuropsychological development of their children at 25–30 months. Clin Endocrinol. 2010;72(6):825–9.

    Article  CAS  Google Scholar 

  116. Trumbo PR. Perchlorate consumption, iodine status, and thyroid function. Nutr Rev. 2010;68(1):62–6.

    Article  PubMed  Google Scholar 

  117. Kaufman AS, Zhou X, Reynolds MR, Kaufman NL, Green GP, Weiss LG. The possible societal impact of the decrease in U.S. blood lead levels on adult IQ. Environ Res. 2014;132:413–20.

    Article  CAS  PubMed  Google Scholar 

  118. Collaborators GDaIIaP. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1211–59.

    Article  Google Scholar 

  119. Bellinger DC, Matthews-Bellinger JA, Kordas K. A developmental perspective on early-life exposure to neurotoxicants. Environ Int. 2016;94:103–12.

    Article  CAS  PubMed  Google Scholar 

  120. Miranda ML, Kim D, Reiter J, Overstreet Galeano MA, Maxson P. Environmental contributors to the achievement gap. Neurotoxicology. 2009;30(6):1019–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Reuben A, Caspi A, Belsky DW, Broadbent J, Harrington H, Sugden K, et al. Association of childhood blood lead levels with cognitive function and socioeconomic status at age 38 years and with IQ change and socioeconomic mobility between childhood and adulthood. JAMA. 2017;317(12):1244–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Patel CJ, Bhattacharya J, Butte AJ. An environment-wide association study (EWAS) on type 2 diabetes mellitus. PLoS One. 2010;5(5):e10746.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B. 1996;58(1):267–88.

    Google Scholar 

  124. Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics. 1970;12(1):55–67.

    Article  Google Scholar 

  125. Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc. 2005;67(2):301–20.

    Article  Google Scholar 

  126. Bobb JF, Valeri L, Claus Henn B, Christiani DC, Wright RO, Mazumdar M, et al. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics. 2014;16(3):493–508.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Agier L, Portengen L, Chadeau-Hyam M, Basagana X, Giorgis-Allemand L, Siroux V, et al. A systematic comparison of linear regression-based statistical methods to assess exposome-health associations. Environ Health Perspect. 2016;124(12):1848–56.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Taylor KW, Joubert BR, Braun JM, Dilworth C, Gennings C, Hauser R, et al. Statistical approaches for assessing health effects of environmental chemical mixtures in epidemiology: lessons from an innovative workshop. Environ Health Perspect. 2016;124(12):A227–a9.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Sun Z, Tao Y, Li S, Ferguson KK, Meeker JD, Park SK, et al. Statistical strategies for constructing health risk models with multiple pollutants and their interactions: possible choices and comparisons. Environ Health. 2013;12(1):85.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Patel CJ. Analytic complexity and challenges in identifying mixtures of exposures associated with phenotypes in the exposome era. Curr Epidemiol Rep. 2017;4:22–30.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Oulhote Y, Bind M-A, Coull B, Patel CJ, Grandjean P. Combining ensemble learning techniques and G-computation to investigate chemical mixtures in environmental epidemiology studies. bioRxiv:147413. 2017.

    Google Scholar 

  132. Park SK, Zhao Z, Mukherjee B. Construction of environmental risk score beyond standard linear models using machine learning methods: application to metal mixtures, oxidative stress and cardiovascular disease in NHANES. Environ Health. 2017;16(1):102.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Kennedy EH, Ma Z, McHugh MD, Small DS. Nonparametric methods for doubly robust estimation of continuous treatment effects. Philos Trans R Soc B. 2017;79(4):1229–45.

    Google Scholar 

  134. Cole SR, Frangakis CE. Commentary: the consistency statement in causal inference: a definition or an assumption? Epidemiology. 2009;20(1):3–5.

    Article  PubMed  Google Scholar 

  135. Hernan MA, Taubman SL. Does obesity shorten life? The importance of well-defined interventions to answer causal questions. Int J Obes. 2008;32(Suppl 3):S8–14.

    Article  Google Scholar 

  136. Weisskopf MG, Webster TF. Trade-offs of personal versus more proxy exposure measures in environmental epidemiology. Epidemiology. 2017;28(5):635–43.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Rehkopf DH, Glymour MM, Osypuk TL. The consistency assumption for causal inference in social epidemiology: when a rose is not a rose. Curr Epidemiol Rep. 2016;3(1):63–71.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Pearl J. On the consistency rule in causal inference: axiom, definition, assumption, or theorem? Epidemiology. 2010;21(6):872–5.

    Article  PubMed  Google Scholar 

  139. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Pierce BL, Tong L, Argos M, Gao J, Jasmine F, Roy S, et al. Arsenic metabolism efficiency has a causal role in arsenic toxicity: Mendelian randomization and gene-environment interaction. Int J Epidemiol. 2014;42(6):1862–72.

    Article  PubMed Central  Google Scholar 

  141. Cedeño Laurent JG, Williams A, Oulhote Y, Zanobetti A, Allen JG, Spengler JD. Reduced cognitive function during a heat wave among residents of non-air-conditioned buildings: an observational study of young adults in the summer of 2016. PLoS Med. 2018;15(7):e1002605.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Kelly C. Bishop JDK, Nicolai V. Kuminoff. Hazed and confused: the effect of air pollution on dementia. NBER Working Paper No 24970. 2018.

    Google Scholar 

  143. Nassan FL, Coull BA, Skakkebaek NE, Williams MA, Dadd R, Mínguez-Alarcón L, et al. A crossover–crossback prospective study of dibutyl-phthalate exposure from mesalamine medications and semen quality in men with inflammatory bowel disease. Environ Int. 2016;95:120–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Philippat C, Botton J, Calafat AM, Ye X, Charles M-A, Slama R, et al. Prenatal exposure to phenols and growth in boys. Epidemiology. 2014;25(5):625–35.

    Article  PubMed  PubMed Central  Google Scholar 

  145. MacLehose RF, Olshan AF, Herring AH, Honein MA, Shaw GM, Romitti PA, et al. Bayesian methods for correcting misclassification: an example from birth defects epidemiology. Epidemiology. 2009;20(1):27–35.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Oulhote Y, Steuerwald U, Debes F, Weihe P, Grandjean P. Behavioral difficulties in 7-year old children in relation to developmental exposure to perfluorinated alkyl substances. Environ Int. 2016;97:237–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Schmidt RJ, Kogan V, Shelton JF, Delwiche L, Hansen RL, Ozonoff S, et al. Combined prenatal pesticide exposure and folic acid intake in relation to autism spectrum disorder. Environ Health Perspect. 2017;125(9):097007.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Goodrich AJ, Volk HE, Tancredi DJ, McConnell R, Lurmann FW, Hansen RL, et al. Joint effects of prenatal air pollutant exposure and maternal folic acid supplementation on risk of autism spectrum disorder. Autism Res. 2018;11(1):69–80.

    Article  PubMed  Google Scholar 

  149. Lemire M, Fillion M, Frenette B, Mayer A, Philibert A, Passos CJ, et al. Selenium and mercury in the Brazilian Amazon: opposing influences on age-related cataracts. Environ Health Perspect. 2010;118(11):1584–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. McCoy DC, Peet ED, Ezzati M, Danaei G, Black MM, Sudfeld CR, et al. Early childhood developmental status in low- and middle-income countries: national, regional, and global prevalence estimates using predictive modeling. PLoS Med. 2016;13(6):e1002034.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef Oulhote .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oulhote, Y., Bellinger, D.C. (2020). Neurodevelopment and Neurobehavioral Disorders in Relation to Developmental Exposures. In: Kishi, R., Grandjean, P. (eds) Health Impacts of Developmental Exposure to Environmental Chemicals. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-0520-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0520-1_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0519-5

  • Online ISBN: 978-981-15-0520-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics