Skip to main content
  • 743 Accesses

Abstract

Phthalate esters (PAE) are widely used plasticizers and solvents that are added to many consumer products used in our daily life. PAEs are not chemically bound to the polymer, and therefore are easily released or migrate into the environment including air, drink, foodstuffs, or furniture. Humans can be exposed to PAE through inhalation, ingestion, dermal absorption, or contact with medical devices.

Approximately 70% of the oral dose is excreted in urine. Urinary monoesters are the major urinary metabolites of PAEs and commonly used as internal exposure indexes. Infants and children are more prone to expose to certain PAE than adolescents and adults due to their hand-to-mouth behavior. Adverse effects of PAE exposure have been observed in human studies, and verified in animal experiments. Prenatal PAE exposure is related to decreased levels of testosterone (TT), free TT, progesterone, triiodothyronine, and thyroxine in children. PAE exposure is also associated with developing allergic disease and obesity, decreasing intelligence quotient scores, and affecting psychological behaviors and renal function in children. Higher PAE exposure is also associated with endometriosis, leiomyoma, spontaneous abortion, fertility, and breast cancer in women and semen quality in men. More data are necessary for cancers of the breast, endometrial tissue, ovary, and/or prostate to understand the potential risk related to sex hormone sensitive neoplasms.

In summary, phthalates exposure was found to be associated with various adverse effects related to altered functions of systems including the endocrine, immune, nervous, and reproduction, particularly at critical development windows during fetal, fast growing, and pubertal stages. Future research is directed to multiple generation approach in humans and/or testing animals, and considerations of psychological parameters (i.e., stress) to provide a further wide observational window for the conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wittassek M, Koch HM, Angerer J, Bruning T. Assessing exposure to phthalates – the human biomonitoring approach. Mol Nutr Food Res. 2011;55:7–31.

    Article  CAS  PubMed  Google Scholar 

  2. Wormuth M, Scheringer M, Vollenweider M, Hungerbuhler K. What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal. 2006;26:803–24.

    Article  PubMed  Google Scholar 

  3. Carlstedt F, Jonsson BA, Bornehag CG. PVC flooring is related to human uptake of phthalates in infants. Indoor Air. 2013;23:32–9.

    Article  CAS  PubMed  Google Scholar 

  4. Koch HM, Calafat AM. Human body burdens of chemicals used in plastic manufacture. Philos Trans R Soc Lond Ser B Biol Sci. 2009;364:2063–78.

    Article  CAS  Google Scholar 

  5. Anderson WA, Castle L, Scotter MJ, Massey RC, Springall C. A biomarker approach to measuring human dietary exposure to certain phthalate diesters. Food Addit Contam. 2001;18:1068–74.

    Article  CAS  PubMed  Google Scholar 

  6. Koch HM, Angerer J. Di-iso-nonylphthalate (DINP) metabolites in human urine after a single oral dose of deuterium-labelled DINP. Int J Hyg Environ Health. 2007;210:9–19.

    Article  CAS  PubMed  Google Scholar 

  7. Koch HM, Bolt HM, Angerer J. Di(2-ethylhexyl)phthalate (DEHP) metabolites in human urine and serum after a single oral dose of deuterium-labelled DEHP. Arch Toxicol. 2004;78:123–30.

    Article  CAS  PubMed  Google Scholar 

  8. Koch HM, Bolt HM, Preuss R, Angerer J. New metabolites of di(2-ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP. Arch Toxicol. 2005;79:367–76.

    Article  CAS  PubMed  Google Scholar 

  9. Silva MJ, Reidy JA, Kato K, et al. Assessment of human exposure to di-isodecyl phthalate using oxidative metabolites as biomarkers. Biomarkers. 2007;12:133–44.

    Article  CAS  PubMed  Google Scholar 

  10. Wittassek M, Angerer J. Phthalates: metabolism and exposure. Int J Androl. 2008;31:131–8.

    Article  CAS  PubMed  Google Scholar 

  11. Koch HM, Preuss R, Angerer J. Di(2-ethylhexyl)phthalate (DEHP): human metabolism and internal exposure an update and latest results. Int J Androl. 2006;29:155–65; discussion 181-5

    Article  CAS  PubMed  Google Scholar 

  12. Guo Y, Kannan K. Comparative assessment of human exposure to phthalate esters from house dust in China and the United States. Environ Sci Technol. 2011;45:3788–94.

    Article  CAS  PubMed  Google Scholar 

  13. Guo Y, Alomirah H, Cho HS, et al. Occurrence of phthalate metabolites in human urine from several Asian countries. Environ Sci Technol. 2011;45:3138–44.

    Article  CAS  PubMed  Google Scholar 

  14. Huang PC, Tsai CH, Liang WY, et al. Age and gender differences in urinary levels of eleven phthalate metabolites in general Taiwanese population after a DEHP episode. PLoS One. 2015;10:e0133782.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Wen HJ, Chen CC, Wu MT, et al. Phthalate exposure and reproductive hormones and sex-hormone binding globulin before puberty – phthalate contaminated-foodstuff episode in Taiwan. PLoS One. 2017;12:e0175536.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Heudorf U, Mersch-Sundermann V, Angerer J. Phthalates: toxicology and exposure. Int J Hyg Environ Health. 2007;210:623–34.

    Article  CAS  PubMed  Google Scholar 

  17. Lin S, Ku HY, Su PH, et al. Phthalate exposure in pregnant women and their children in Central Taiwan. Chemosphere. 2011;82:947–55.

    Article  CAS  PubMed  Google Scholar 

  18. Hartmann C, Uhl M, Weiss S, et al. Human biomonitoring of phthalate exposure in Austrian children and adults and cumulative risk assessment. Int J Hyg Environ Health. 2015;218:489–99.

    Article  CAS  PubMed  Google Scholar 

  19. Ait Bamai Y, Araki A, Kawai T, et al. Comparisons of urinary phthalate metabolites and daily phthalate intakes among Japanese families. Int J Hyg Environ Health. 2015;218:461–70.

    Article  CAS  PubMed  Google Scholar 

  20. Li JH, Ko YC. Plasticizer incident and its health effects in Taiwan. Kaohsiung J Med Sci. 2012;28:S17–21.

    Article  CAS  PubMed  Google Scholar 

  21. Wu CF, Chen BH, Shiea J, et al. Temporal changes of urinary oxidative metabolites of di(2-ethylhexyl)phthalate after the 2011 phthalate incident in Taiwanese children: findings of a six month follow-up. Environ Sci Technol. 2013;47:13754–62.

    Article  CAS  PubMed  Google Scholar 

  22. Huang HB, Chuang CJ, Su PH, et al. Prenatal and childhood exposure to phthalate diesters and thyroid function in a 9-year follow-up birth Cohort study: Taiwan Maternal and Infant Cohort study. Epidemiology. 2017;28(Suppl 1):S10–8.

    Article  PubMed  Google Scholar 

  23. Lien YJ, Ku HY, Su PH, et al. Prenatal exposure to phthalate esters and behavioral syndromes in children at 8 years of age: Taiwan Maternal and Infant Cohort Study. Environ Health Perspect. 2015;123:95–100.

    Article  CAS  PubMed  Google Scholar 

  24. Wang IJ, Lin CC, Lin YJ, Hsieh WS, Chen PC. Early life phthalate exposure and atopic disorders in children: a prospective birth cohort study. Environ Int. 2014;62:48–54.

    Article  CAS  PubMed  Google Scholar 

  25. Chen CC, Wang YH, Chen WJ, et al. A benchmark dose study of prenatal exposure to di(2-ethylhexyl) phthalate and behavioral problems in children. Int J Hyg Environ Health. 2019;222:971–80.

    Article  CAS  PubMed  Google Scholar 

  26. Chen SY, Hwang JS, Sung FC, et al. Mono-2-ethylhexyl phthalate associated with insulin resistance and lower testosterone levels in a young population. Environ Pollut. 2017;225:112–7.

    Article  CAS  PubMed  Google Scholar 

  27. Wen HJ, Sie L, Su PH, et al. Prenatal and childhood exposure to phthalate diesters and sex steroid hormones in 2-, 5-, 8-, and 11-year-old children: a pilot study of the Taiwan Maternal and Infant Cohort Study. J Epidemiol. 2017;27:516–23.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lin LC, Wang SL, Chang YC, et al. Associations between maternal phthalate exposure and cord sex hormones in human infants. Chemosphere. 2011;83:1192–9.

    Article  CAS  PubMed  Google Scholar 

  29. Araki A, Mitsui T, Miyashita C, et al. Association between maternal exposure to di(2-ethylhexyl) phthalate and reproductive hormone levels in fetal blood: the Hokkaido study on environment and children’s health. PLoS One. 2014;9:e109039.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Sathyanarayana S, Butts S, Wang C, et al. Early prenatal phthalate exposure, sex steroid hormones, and birth outcomes. J Clin Endocrinol Metab. 2017;102:1870–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fong JP, Lee FJ, Lu IS, Uang SN, Lee CC. Relationship between urinary concentrations of di(2-ethylhexyl) phthalate (DEHP) metabolites and reproductive hormones in polyvinyl chloride production workers. Occup Environ Med. 2015;72:346–53.

    Article  PubMed  Google Scholar 

  32. Swan SH, Main KM, Liu F, et al. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ Health Perspect. 2005;113:1056–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sathyanarayana S, Grady R, Barrett ES, et al. First trimester phthalate exposure and male newborn genital anomalies. Environ Res. 2016;151:777–82.

    Article  CAS  PubMed  Google Scholar 

  34. Martino-Andrade AJ, Liu F, Sathyanarayana S, et al. Timing of prenatal phthalate exposure in relation to genital endpoints in male newborns. Andrology. 2016;4:585–93.

    Article  CAS  PubMed  Google Scholar 

  35. Swan SH, Sathyanarayana S, Barrett ES, et al. First trimester phthalate exposure and anogenital distance in newborns. Hum Reprod. 2015;30:963–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wenzel AG, Bloom MS, Butts CD, et al. Influence of race on prenatal phthalate exposure and anogenital measurements among boys and girls. Environ Int. 2018;110:61–70.

    Article  CAS  PubMed  Google Scholar 

  37. Bornehag CG, Carlstedt F, Jonsson BA, et al. Prenatal phthalate exposures and anogenital distance in Swedish boys. Environ Health Perspect. 2015;123:101–7.

    Article  CAS  PubMed  Google Scholar 

  38. Axelsson J, Rylander L, Rignell-Hydbom A, et al. Prenatal phthalate exposure and reproductive function in young men. Environ Res. 2015;138:264–70.

    Article  CAS  PubMed  Google Scholar 

  39. Su PH, Chang CK, Lin CY, et al. Prenatal exposure to phthalate ester and pubertal development in a birth cohort in Central Taiwan: a 12-year follow-up study. Environ Res. 2015;136:324–30.

    Article  CAS  PubMed  Google Scholar 

  40. Watkins DJ, Sanchez BN, Tellez-Rojo MM, et al. Phthalate and bisphenol A exposure during in utero windows of susceptibility in relation to reproductive hormones and pubertal development in girls. Environ Res. 2017;159:143–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Watkins DJ, Sanchez BN, Tellez-Rojo MM, et al. Impact of phthalate and BPA exposure during in utero windows of susceptibility on reproductive hormones and sexual maturation in peripubertal males. Environ Health. 2017;16:69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kasper-Sonnenberg M, Wittsiepe J, Wald K, Koch HM, Wilhelm M. Pre-pubertal exposure with phthalates and bisphenol A and pubertal development. PLoS One. 2017;12:e0187922.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Borch J, Metzdorff SB, Vinggaard AM, Brokken L, Dalgaard M. Mechanisms underlying the anti-androgenic effects of diethylhexyl phthalate in fetal rat testis. Toxicology. 2006;223:144–55.

    Article  CAS  PubMed  Google Scholar 

  44. Hallmark N, Walker M, McKinnell C, et al. Effects of monobutyl and di(n-butyl) phthalate in vitro on steroidogenesis and Leydig cell aggregation in fetal testis explants from the rat: comparison with effects in vivo in the fetal rat and neonatal marmoset and in vitro in the human. Environ Health Perspect. 2007;115:390–6.

    Article  CAS  PubMed  Google Scholar 

  45. Kim DH, Park CG, Kim SH, Kim YJ. The effects of mono-(2-Ethylhexyl) phthalate (MEHP) on human estrogen receptor (hER) and androgen receptor (hAR) by YES/YAS in vitro assay. Molecules. 2019;24:E1558.

    Article  PubMed  CAS  Google Scholar 

  46. Kuo FC, Su SW, Wu CF, et al. Relationship of urinary phthalate metabolites with serum thyroid hormones in pregnant women and their newborns: a prospective birth cohort in Taiwan. PLoS One. 2015;10:e0123884.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Wu MT, Wu CF, Chen BH, et al. Intake of phthalate-tainted foods alters thyroid functions in Taiwanese children. PLoS One. 2013;8:e55005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Morgenstern R, Whyatt RM, Insel BJ, et al. Phthalates and thyroid function in preschool age children: sex specific associations. Environ Int. 2017;106:11–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. de Cock M, de Boer MR, Lamoree M, Legler J, van de Bor M. Prenatal exposure to endocrine disrupting chemicals in relation to thyroid hormone levels in infants – a Dutch prospective cohort study. Environ Health. 2014;13:106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Yao HY, Han Y, Gao H, et al. Maternal phthalate exposure during the first trimester and serum thyroid hormones in pregnant women and their newborns. Chemosphere. 2016;157:42–8.

    Article  CAS  PubMed  Google Scholar 

  51. Boas M, Frederiksen H, Feldt-Rasmussen U, et al. Childhood exposure to phthalates: associations with thyroid function, insulin-like growth factor I, and growth. Environ Health Perspect. 2010;118:1458–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Meeker JD, Calafat AM, Hauser R. Di(2-ethylhexyl) phthalate metabolites may alter thyroid hormone levels in men. Environ Health Perspect. 2007;115:1029–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meeker JD, Ferguson KK. Relationship between urinary phthalate and bisphenol A concentrations and serum thyroid measures in U.S. adults and adolescents from the National Health and Nutrition Examination Survey (NHANES) 2007-2008. Environ Health Perspect. 2011;119:1396–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang PC, Kuo PL, Guo YL, Liao PC, Lee CC. Associations between urinary phthalate monoesters and thyroid hormones in pregnant women. Hum Reprod. 2007;22:2715–22.

    Article  CAS  PubMed  Google Scholar 

  55. Johns LE, Ferguson KK, McElrath TF, Mukherjee B, Meeker JD. Associations between repeated measures of maternal urinary phthalate metabolites and thyroid hormone parameters during pregnancy. Environ Health Perspect. 2016;124:1808–15.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Schug TT, Janesick A, Blumberg B, Heindel JJ. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol. 2011;127:204–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Howarth JA, Price SC, Dobrota M, Kentish PA, Hinton RH. Effects on male rats of di-(2-ethylhexyl) phthalate and di-n-hexylphthalate administered alone or in combination. Toxicol Lett. 2001;121:35–43.

    Article  CAS  PubMed  Google Scholar 

  58. Poon R, Lecavalier P, Mueller R, et al. Subchronic oral toxicity of di-n-octyl phthalate and di(2-Ethylhexyl) phthalate in the rat. Food Chem Toxicol. 1997;35:225–39.

    Article  CAS  PubMed  Google Scholar 

  59. Shen O, Du G, Sun H, et al. Comparison of in vitro hormone activities of selected phthalates using reporter gene assays. Toxicol Lett. 2009;191:9–14.

    Article  CAS  PubMed  Google Scholar 

  60. Shi W, Wang X, Hu G, et al. Bioanalytical and instrumental analysis of thyroid hormone disrupting compounds in water sources along the Yangtze River. Environ Pollut. 2011;159:441–8.

    Article  CAS  PubMed  Google Scholar 

  61. Wenzel A, Franz C, Breous E, Loos U. Modulation of iodide uptake by dialkyl phthalate plasticisers in FRTL-5 rat thyroid follicular cells. Mol Cell Endocrinol. 2005;244:63–71.

    Article  CAS  PubMed  Google Scholar 

  62. Liu C, Zhao L, Wei L, Li L. DEHP reduces thyroid hormones via interacting with hormone synthesis-related proteins, deiodinases, transthyretin, receptors, and hepatic enzymes in rats. Environ Sci Pollut Res Int. 2015;22:12711–9.

    Article  CAS  PubMed  Google Scholar 

  63. Ye H, Ha M, Yang M, et al. Di2-ethylhexyl phthalate disrupts thyroid hormone homeostasis through activating the Ras/Akt/TRHr pathway and inducing hepatic enzymes. Sci Rep. 2017;7:40153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dong J, Cong Z, You M, et al. Effects of perinatal di (2-ethylhexyl) phthalate exposure on thyroid function in rat offspring. Environ Toxicol Pharmacol. 2019;67:53–60.

    Article  CAS  PubMed  Google Scholar 

  65. Rice D, Barone SJ. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000;108(Suppl 3):511–33.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Stroustrup A, Swan SH. In: Landrigan PJ, Etzel RA, editors. Textbook of children’s environmental health. New York: Oxford University Press; 2014. Endocrine disruptors. p. 328–9.

    Google Scholar 

  67. Kim Y, Ha EH, Kim EJ, et al. Prenatal exposure to phthalates and infant development at 6 months: prospective mothers and Children’s environmental health (MOCEH) study. Environ Health Perspect. 2011;119:1495–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Whyatt RM, Liu X, Rauh VA, et al. Maternal prenatal urinary phthalate metabolite concentrations and child mental, psychomotor, and behavioral development at 3 years of age. Environ Health Perspect. 2012;120:290–5.

    Article  CAS  PubMed  Google Scholar 

  69. Doherty BT, Engel SM, Buckley JP, et al. Prenatal phthalate biomarker concentrations and performance on the Bayley scales of infant development-II in a population of young urban children. Environ Res. 2017;152:51–8.

    Article  CAS  PubMed  Google Scholar 

  70. Tellez-Rojo MM, Cantoral A, Cantonwine DE, et al. Prenatal urinary phthalate metabolites levels and neurodevelopment in children at two and three years of age. Sci Total Environ. 2013;461–462:386–90.

    Article  PubMed  CAS  Google Scholar 

  71. Factor-Litvak P, Insel B, Calafat AM, et al. Persistent associations between maternal prenatal exposure to phthalates on child IQ at age 7 years. PLoS One. 2014;9:e114003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Huang HB, Chen HY, Su PH, et al. Fetal and childhood exposure to phthalate diesters and cognitive function in children up to 12 years of age: Taiwanese maternal and infant cohort study. PLoS One. 2015;10:e0131910.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Kim JI, Hong Y-C, Shin CH, et al. The effects of maternal and children phthalate exposure on the neurocognitive function of 6-year-old children. Environ Res. 2017;156:519–25.

    Article  CAS  PubMed  Google Scholar 

  74. Minatoya M, Naka jima S, Sasaki S, et al. Effects of prenatal phthalate exposure on thyroid hormone levels, mental and psychomotor development of infants: the Hokkaido study on environment and Children’s health. Sci Total Environ. 2016;565:1037–43.

    Article  CAS  PubMed  Google Scholar 

  75. Engel SM, Miodovnik A, Canfield RL, et al. Prenatal phthalate exposure is associated with childhood behavior and executive functioning. Environ Health Perspect. 2010;118:565–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kobrosly RW, Evans S, Miodovnik A, et al. Prenatal phthalate exposures and neurobehavioral development scores in boys and girls at 6–10 years of age. Environ Health Perspect. 2014;122:521–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen T, Yang W, Li Y, Chen X, Xu S. Mono-(2-ethylhexyl) phthalate impairs neurodevelopment: inhibition of proliferation and promotion of differentiation in PC12 cells. Toxicol Lett. 2011;201:34–41.

    Article  CAS  PubMed  Google Scholar 

  78. Dhanya CR, Indu AR, Deepadevi KV, Kurup PA. Inhibition of membrane Na(+)-K+ Atpase of the brain, liver and RBC in rats administered di(2-ethyl hexyl) phthalate (DEHP) a plasticizer used in polyvinyl chloride (PVC) blood storage bags. Indian J Exp Biol. 2003;41:814–20.

    CAS  PubMed  Google Scholar 

  79. Wang R, Xu X, Zhu Q. Pubertal exposure to di-(2-ethylhexyl) phthalate influences social behavior and dopamine receptor D2 of adult female mice. Chemosphere. 2016;144:1771–9.

    Article  CAS  PubMed  Google Scholar 

  80. Kota BP, Huang TH, Roufogalis BD. An overview on biological mechanisms of PPARs. Pharmacol Res. 2005;51:85–94.

    Article  CAS  PubMed  Google Scholar 

  81. van Neerven S, Kampmann E, Mey J. RAR/RXR and PPAR/RXR signaling in neurological and psychiatric diseases. Prog Neurobiol. 2008;85:433–51.

    Article  PubMed  CAS  Google Scholar 

  82. Akaike M, Kato N, Ohno H, Kobayashi T. Hyperactivity and spatial maze learning impairment of adult rats with temporary neonatal hypothyroidism. Neurotoxicol Teratol. 1991;13:317–22.

    Article  CAS  PubMed  Google Scholar 

  83. Stein SA, Adams PM, Shanklin DR, Mihailoff GA, Palnitkar MB. Thyroid hormone control of brain and motor development: molecular, neuroanatomical, and behavioral studies. Adv Exp Med Biol. 1991;299:47–105.

    Article  CAS  PubMed  Google Scholar 

  84. Asher MI, Montefort S, Bjorksten B, et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC phases one and three repeat multicountry cross-sectional surveys. Lancet. 2006;368:733–43.

    Article  PubMed  Google Scholar 

  85. Balkrishnan R, Housman TS, Carroll C, Feldman SR, Fleischer AB. Disease severity and associated family impact in childhood atopic dermatitis. Arch Dis Child. 2003;88:423–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li MC, Chen CH, Guo YL. Phthalate esters and childhood asthma: a systematic review and congener-specific meta-analysis. Environ Pollut. 2017;229:655–60.

    Article  CAS  PubMed  Google Scholar 

  87. Jaakkola JJ, Knight TL. The role of exposure to phthalates from polyvinyl chloride products in the development of asthma and allergies: a systematic review and meta-analysis. Environ Health Perspect. 2008;116:845–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ait Bamai Y, Shibata E, Saito I, et al. Exposure to house dust phthalates in relation to asthma and allergies in both children and adults. Sci Total Environ. 2014;485-486:153–63.

    Article  CAS  PubMed  Google Scholar 

  89. Deutschle T, Reiter R, Butte W, et al. A controlled challenge study on di(2-ethylhexyl) phthalate (DEHP) in house dust and the immune response in human nasal mucosa of allergic subjects. Environ Health Perspect. 2008;116:1487–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bertelsen RJ, Carlsen KC, Calafat AM, et al. Urinary biomarkers for phthalates associated with asthma in Norwegian children. Environ Health Perspect. 2013;121:251–6.

    Article  PubMed  CAS  Google Scholar 

  91. Ku HY, Su PH, Wen HJ, et al. Prenatal and postnatal exposure to phthalate esters and asthma: a 9-year follow-up study of a Taiwanese birth cohort. PLoS One. 2015;10:e0123309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Ait Bamai Y, Miyashita C, Araki A, et al. Effects of prenatal di(2-ethylhexyl) phthalate exposure on childhood allergies and infectious diseases: the Hokkaido study on environment and Children’s health. Sci Total Environ. 2018;618:1408–15.

    Article  CAS  PubMed  Google Scholar 

  93. Jahreis S, Trump S, Bauer M, et al. Maternal phthalate exposure promotes allergic airway inflammation over 2 generations through epigenetic modifications. J Allergy Clin Immunol. 2018;141:741–53.

    Article  CAS  PubMed  Google Scholar 

  94. Gascon M, Casas M, Morales E, et al. Prenatal exposure to bisphenol A and phthalates and childhood respiratory tract infections and allergy. J Allergy Clin Immunol. 2015;135:370–8.

    Article  CAS  PubMed  Google Scholar 

  95. Herberth G, Pierzchalski A, Feltens R, et al. Prenatal phthalate exposure associates with low regulatory T-cell numbers and atopic dermatitis in early childhood: results from the LINA mother-child study. J Allergy Clin Immunol. 2017;139:1376–1379 e8.

    Article  CAS  PubMed  Google Scholar 

  96. Choi WJ, Kwon HJ, Hong S, et al. Potential nonmonotonous association between di(2-ethylhexyl) phthalate exposure and atopic dermatitis in Korean children. Br J Dermatol. 2014;171:854–60.

    Article  CAS  PubMed  Google Scholar 

  97. Overgaard LEK, Main KM, Frederiksen H, et al. Children with atopic dermatitis and frequent emollient use have increased urinary levels of low-molecular-weight phthalate metabolites and parabens. Allergy. 2017;72:1768–77.

    Article  CAS  PubMed  Google Scholar 

  98. Wang IJ, Karmaus WJ. The effect of phthalate exposure and filaggrin gene variants on atopic dermatitis. Environ Res. 2015;136:213–8.

    Article  CAS  PubMed  Google Scholar 

  99. Guo J, Han B, Qin L, et al. Pulmonary toxicity and adjuvant effect of di-(2-exylhexyl) phthalate in ovalbumin-immunized BALB/c mice. PLoS One. 2012;7:e39008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kuo CH, Hsieh CC, Kuo HF, et al. Phthalates suppress type I interferon in human plasmacytoid dendritic cells via epigenetic regulation. Allergy. 2013;68:870–9.

    Article  CAS  PubMed  Google Scholar 

  101. Han Y, Wang X, Chen G, et al. Di-(2-ethylhexyl) phthalate adjuvantly induces imbalanced humoral immunity in ovalbumin-sensitized BALB/c mice ascribing to T follicular helper cells hyperfunction. Toxicology. 2014;324:88–97.

    Article  CAS  PubMed  Google Scholar 

  102. Pei X, Duan Z, Ma M, Zhang Y, Guo L. Role of Ca/CaN/NFAT signaling in IL-4 expression by splenic lymphocytes exposed to phthalate (2-ethylhexyl) ester in spleen lymphocytes. Mol Biol Rep. 2014;41:2129–42.

    Article  CAS  PubMed  Google Scholar 

  103. You H, Li R, Wei C, et al. Thymic stromal Lymphopoietin neutralization inhibits the immune adjuvant effect of Di-(2-Ethylhexyl) phthalate in Balb/c mouse asthma model. PLoS One. 2016;11:e0159479.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Shen S, Li J, You H, et al. Oral exposure to diisodecyl phthalate aggravates allergic dermatitis by oxidative stress and enhancement of thymic stromal lymphopoietin. Food Chem Toxicol. 2017;99:60–9.

    Article  CAS  PubMed  Google Scholar 

  105. Bolling AK, Ovrevik J, Samuelsen JT, et al. Mono-2-ethylhexylphthalate (MEHP) induces TNF-alpha release and macrophage differentiation through different signalling pathways in RAW264.7 cells. Toxicol Lett. 2012;209:43–50.

    Article  PubMed  CAS  Google Scholar 

  106. World Health Organisation (WHO). Obesity and overweight. http://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 16 February 2018.

  107. Minatoya M, Araki A, Miyashita C, et al. Association between prenatal bisphenol A and phthalate exposures and fetal metabolic related biomarkers: the Hokkaido study on environment and Children’s health. Environ Res. 2018;161:505–11.

    Article  CAS  PubMed  Google Scholar 

  108. Buckley JP, Engel SM, Braun JM, et al. Prenatal phthalate exposures and body mass index among 4- to 7-year-old children: a pooled analysis. Epidemiology. 2016;27:449–58.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hatch EE, Nelson JW, Qureshi MM, et al. Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: a cross-sectional study of NHANES data, 1999–2002. Environ Health. 2008;7:27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Wang H, Zhou Y, Tang C, et al. Urinary phthalate metabolites are associated with body mass index and waist circumference in Chinese school children. PLoS One. 2013;8:e56800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hou JW, Lin CL, Tsai YA, et al. The effects of phthalate and nonylphenol exposure on body size and secondary sexual characteristics during puberty. Int J Hyg Environ Health. 2015;218:603–15.

    Article  CAS  PubMed  Google Scholar 

  112. Trasande L, Attina TM, Sathyanarayana S, Spanier AJ, Blustein J. Race/ethnicity-specific associations of urinary phthalates with childhood body mass in a nationally representative sample. Environ Health Perspect. 2013;121:501–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Maresca MM, Hoepner LA, Hassoun A, et al. Prenatal exposure to phthalates and childhood body size in an urban cohort. Environ Health Perspect. 2016;124:514–20.

    Article  CAS  PubMed  Google Scholar 

  114. Grun F, Blumberg B. Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology. 2006;147:S50–5.

    Article  CAS  PubMed  Google Scholar 

  115. Taxvig C, Dreisig K, Boberg J, et al. Differential effects of environmental chemicals and food contaminants on adipogenesis, biomarker release and PPARgamma activation. Mol Cell Endocrinol. 2012;361:106–15.

    Article  CAS  PubMed  Google Scholar 

  116. Sonkar R, Powell CA, Choudhury M. Benzyl butyl phthalate induces epigenetic stress to enhance adipogenesis in mesenchymal stem cells. Mol Cell Endocrinol. 2016;431:109–22.

    Article  CAS  PubMed  Google Scholar 

  117. Schmidt JS, Schaedlich K, Fiandanese N, Pocar P, Fischer B. Effects of di(2-ethylhexyl) phthalate (DEHP) on female fertility and adipogenesis in C3H/N mice. Environ Health Perspect. 2012;120:1123–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kloting N, Hesselbarth N, Gericke M, et al. Di-(2-Ethylhexyl)-phthalate (DEHP) causes impaired adipocyte function and alters serum metabolites. PLoS One. 2015;10:e0143190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Rais-Bahrami K, Nunez S, Revenis ME, Luban NL, Short BL. Follow-up study of adolescents exposed to di(2-ethylhexyl) phthalate (DEHP) as neonates on extracorporeal membrane oxygenation (ECMO) support. Environ Health Perspect. 2004;112:1339–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Trasande L, Sathyanarayana S, Trachtman H. Dietary phthalates and low-grade albuminuria in US children and adolescents. Clin J Am Soc Nephrol. 2014;9:100–9.

    Article  CAS  PubMed  Google Scholar 

  121. Tsai HJ, Chen BH, Wu CF, et al. Intake of phthalate-tainted foods and microalbuminuria in children: the 2011 Taiwan food scandal. Environ Int. 2016;89-90:129–37.

    Article  CAS  PubMed  Google Scholar 

  122. Marsman D. NTP technical report on the toxicity studies of Dibutyl phthalate (CAS no. 84-74-2) administered in feed to F344/N rats and B6C3F1 mice. Toxic Rep Ser. 1995;30:1–G5.

    PubMed  Google Scholar 

  123. Pugh G Jr, Isenberg JS, Kamendulis LM, et al. Effects of di-isononyl phthalate, di-2-ethylhexyl phthalate, and clofibrate in cynomolgus monkeys. Toxicol Sci. 2000;56:181–8.

    Article  CAS  PubMed  Google Scholar 

  124. David RM, Moore MR, Finney DC, Guest D. Chronic toxicity of di(2-ethylhexyl)phthalate in mice. Toxicol Sci. 2000;58:377–85.

    Article  CAS  PubMed  Google Scholar 

  125. Kamijo Y, Hora K, Nakajima T, et al. Peroxisome proliferator-activated receptor alpha protects against glomerulonephritis induced by long-term exposure to the plasticizer di-(2-ethylhexyl)phthalate. J Am Soc Nephrol. 2007;18:176–88.

    Article  CAS  PubMed  Google Scholar 

  126. Zhu YP, Chen L, Wang XJ, et al. Maternal exposure to di-n-butyl phthalate (DBP) induces renal fibrosis in adult rat offspring. Oncotarget. 2017;8:31101–11.

    PubMed  PubMed Central  Google Scholar 

  127. Wu CT, Wang CC, Huang LC, Liu SH, Chiang CK. Plasticizer di-(2-Ethylhexyl)phthalate induces epithelial-to-mesenchymal transition and renal fibrosis in vitro and in vivo. Toxicol Sci. 2018;164:363–74.

    Article  CAS  PubMed  Google Scholar 

  128. Bloom MS, Whitcomb BW, Chen Z, et al. Associations between urinary phthalate concentrations and semen quality parameters in a general population. Hum Reprod. 2015;30:2645–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Thurston SW, Mendiola J, Bellamy AR, et al. Phthalate exposure and semen quality in fertile US men. Andrology. 2016;4:632–8.

    Article  CAS  PubMed  Google Scholar 

  130. Chang WH, Wu MH, Pan HA, Guo PL, Lee CC. Semen quality and insulin-like factor 3: associations with urinary and seminal levels of phthalate metabolites in adult males. Chemosphere. 2017;173:594–602.

    Article  CAS  PubMed  Google Scholar 

  131. Pan Y, Jing J, Yeung LWY, et al. Associations of urinary 5-methyl-2′-deoxycytidine and 5-hydroxymethyl-2′-deoxycytidine with phthalate exposure and semen quality in 562 Chinese adult men. Environ Int. 2016;94:583–90.

    Article  CAS  PubMed  Google Scholar 

  132. Al-Saleh I, Coskun S, Al-Doush I, et al. The relationships between urinary phthalate metabolites, reproductive hormones and semen parameters in men attending in vitro fertilization clinic. Sci Total Environ. 2019;658:982–95.

    Article  CAS  PubMed  Google Scholar 

  133. Wang YX, You L, Zeng Q, et al. Phthalate exposure and human semen quality: results from an infertility clinic in China. Environ Res. 2015;142:1–9.

    Article  CAS  PubMed  Google Scholar 

  134. Ivell R, Heng K, Anand-Ivell R. Insulin-like factor 3 and the HPG axis in the male. Front Endocrinol (Lausanne). 2014;5:6.

    Article  Google Scholar 

  135. Aly HA, Hassan MH, El-Beshbishy HA, Alahdal AM, Osman AM. Dibutyl phthalate induces oxidative stress and impairs spermatogenesis in adult rats. Toxicol Ind Health. 2016;32:1467–77.

    Article  CAS  PubMed  Google Scholar 

  136. Buck Louis GM, Sundaram R, Sweeney AM, et al. Urinary bisphenol A, phthalates, and couple fecundity: the longitudinal investigation of fertility and the environment (LIFE) study. Fertil Steril. 2014;101:1359–66.

    Article  CAS  PubMed  Google Scholar 

  137. Thomsen AM, Riis AH, Olsen J, et al. Female exposure to phthalates and time to pregnancy: a first pregnancy planner study. Hum Reprod. 2017;32:232–8.

    CAS  PubMed  Google Scholar 

  138. Minguez-Alarcon L, Gaskins AJ. Female exposure to endocrine disrupting chemicals and fecundity: a review. Curr Opin Obstet Gynecol. 2017;29:202–11.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Reddy BS, Rozati R, Reddy BV, Raman NV. Association of phthalate esters with endometriosis in Indian women. BJOG. 2006;113:515–20.

    Article  CAS  PubMed  Google Scholar 

  140. Kim SH, Chun S, Jang JY, et al. Increased plasma levels of phthalate esters in women with advanced-stage endometriosis: a prospective case-control study. Fertil Steril. 2011;95:357–9.

    Article  CAS  PubMed  Google Scholar 

  141. Kim SH, Cho S, Ihm HJ, et al. Possible role of phthalate in the pathogenesis of endometriosis: in vitro, animal, and human data. J Clin Endocrinol Metab. 2015;100:E1502–11.

    Article  PubMed  Google Scholar 

  142. Huang PC, Tsai EM, Li WF, et al. Association between phthalate exposure and glutathione S-transferase M1 polymorphism in adenomyosis, leiomyoma and endometriosis. Hum Reprod. 2010;25:986–94.

    Article  CAS  PubMed  Google Scholar 

  143. Messerlian C, Souter I, Gaskins AJ, et al. Urinary phthalate metabolites and ovarian reserve among women seeking infertility care. Hum Reprod. 2016;31:75–83.

    Article  CAS  PubMed  Google Scholar 

  144. Vagi SJ, Azziz-Baumgartner E, Sjodin A, et al. Exploring the potential association between brominated diphenyl ethers, polychlorinated biphenyls, organochlorine pesticides, perfluorinated compounds, phthalates, and bisphenol A in polycystic ovary syndrome: a case-control study. BMC Endocr Disord. 2014;14:86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Cho YJ, Park SB, Han M. Di-(2-ethylhexyl)-phthalate induces oxidative stress in human endometrial stromal cells in vitro. Mol Cell Endocrinol. 2015;407:9–17.

    Article  CAS  PubMed  Google Scholar 

  146. Kim Y, Kim MR, Kim JH, Cho HH. Aldo-keto reductase activity after diethylhexyl phthalate exposure in eutopic and ectopic endometrial cells. Eur J Obstet Gynecol Reprod Biol. 2017;215:215–9.

    Article  CAS  PubMed  Google Scholar 

  147. Moyer B, Hixon ML. Reproductive effects in F1 adult females exposed in utero to moderate to high doses of mono-2-ethylhexylphthalate (MEHP). Reprod Toxicol. 2012;34:43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Vabre P, Gatimel N, Moreau J, et al. Environmental pollutants, a possible etiology for premature ovarian insufficiency: a narrative review of animal and human data. Environ Health. 2017;16:37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Zhang XF, Zhang LJ, Li L, et al. Diethylhexyl phthalate exposure impairs follicular development and affects oocyte maturation in the mouse. Environ Mol Mutagen. 2013;54:354–61.

    Article  CAS  PubMed  Google Scholar 

  150. Hannon PR, Niermann S, Flaws JA. Acute exposure to Di(2-Ethylhexyl) phthalate in adulthood causes adverse reproductive outcomes later in life and accelerates reproductive aging in female mice. Toxicol Sci. 2016;150:97–108.

    Article  CAS  PubMed  Google Scholar 

  151. Ma Y, Zhang J, Zeng R, et al. Effects of the Dibutyl phthalate (DBP) on the expression and activity of aromatase in human Granulosa cell line KGN. Ann Clin Lab Sci. 2019;49:175–82.

    CAS  PubMed  Google Scholar 

  152. Fu Z, Zhao F, Chen K, et al. Association between urinary phthalate metabolites and risk of breast cancer and uterine leiomyoma. Reprod Toxicol. 2017;74:134–42.

    Article  CAS  PubMed  Google Scholar 

  153. Sun J, Zhang MR, Zhang LQ, et al. Phthalate monoesters in association with uterine leiomyomata in Shanghai. Int J Environ Health Res. 2016;26:306–16.

    Article  CAS  PubMed  Google Scholar 

  154. Kim YA, Kho Y, Chun KC, et al. Increased urinary phthalate levels in women with uterine leiomyoma: a case-control study. Int J Environ Res Public Health 2016; 13:E1247.

    Article  PubMed Central  CAS  Google Scholar 

  155. Weuve J, Hauser R, Calafat AM, Missmer SA, Wise LA. Association of exposure to phthalates with endometriosis and uterine leiomyomata: findings from NHANES, 1999–2004. Environ Health Perspect. 2010;118:825–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pollack AZ, Buck Louis GM, Chen Z, et al. Bisphenol A, benzophenone-type ultraviolet filters, and phthalates in relation to uterine leiomyoma. Environ Res. 2015;137:101–7.

    Article  CAS  PubMed  Google Scholar 

  157. Kim JH. Analysis of the in vitro effects of di-(2-ethylhexyl) phthalate exposure on human uterine leiomyoma cells. Exp Ther Med. 2018;15:4972–8.

    PubMed  PubMed Central  Google Scholar 

  158. Jukic AM, Calafat AM, McConnaughey DR, et al. Urinary concentrations of phthalate metabolites and Bisphenol A and associations with follicular-phase length, luteal-phase length, Fecundability, and early pregnancy loss. Environ Health Perspect. 2016;124:321–8.

    Article  CAS  PubMed  Google Scholar 

  159. Liao KW, Kuo PL, Huang HB, et al. Increased risk of phthalates exposure for recurrent pregnancy loss in reproductive-aged women. Environ Pollut. 2018;241:969–77.

    Article  CAS  PubMed  Google Scholar 

  160. Peng F, Ji W, Zhu F, et al. A study on phthalate metabolites, bisphenol A and nonylphenol in the urine of Chinese women with unexplained recurrent spontaneous abortion. Environ Res. 2016;150:622–8.

    Article  CAS  PubMed  Google Scholar 

  161. Zhao R, Wu Y, Zhao F, et al. The risk of missed abortion associated with the levels of tobacco, heavy metals and phthalate in hair of pregnant woman: a case control study in Chinese women. Medicine (Baltimore). 2017;96:e9388.

    Article  CAS  Google Scholar 

  162. Mahaboob Basha P, Radha MJ. Gestational di-n-butyl phthalate exposure induced developmental and teratogenic anomalies in rats: a multigenerational assessment. Environ Sci Pollut Res Int. 2017;24:4537–51.

    Article  CAS  PubMed  Google Scholar 

  163. Lopez-Carrillo L, Hernandez-Ramirez RU, Calafat AM, et al. Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Perspect. 2010;118:539–44.

    Article  CAS  PubMed  Google Scholar 

  164. Merida-Ortega A, Hernandez-Alcaraz C, Hernandez-Ramirez RU, et al. Phthalate exposure, flavonoid consumption and breast cancer risk among Mexican women. Environ Int. 2016;96:167–72.

    Article  CAS  PubMed  Google Scholar 

  165. Holmes AK, Koller KR, Kieszak SM, et al. Case-control study of breast cancer and exposure to synthetic environmental chemicals among Alaska native women. Int J Circumpolar Health. 2014;73:25760.

    Article  PubMed  Google Scholar 

  166. Parada H Jr, Gammon MD, Chen J, et al. Urinary phthalate metabolite concentrations and breast cancer incidence and survival following breast cancer: the Long Island Breast Cancer Study project. Environ Health Perspect. 2018;126:047013.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Binder AM, Corvalan C, Pereira A, et al. Pre-pubertal and pubertal endocrine disrupting chemicals exposure and breast density among Chilean adolescents. Cancer Epidemiol Biomark Prev. 2018;27:1491.

    Article  Google Scholar 

  168. Carran M, Shaw IC. New Zealand Malayan war veterans’ exposure to dibutylphthalate is associated with an increased incidence of cryptorchidism, hypospadias and breast cancer in their children. N Z Med J. 2012;125:52–63.

    PubMed  Google Scholar 

  169. Crobeddu B, Ferraris E, Kolasa E, Plante I. Di(2-ethylhexyl) phthalate (DEHP) increases proliferation of epithelial breast cancer cells through progesterone receptor dysregulation. Environ Res. 2019;173:165–73.

    Article  CAS  PubMed  Google Scholar 

  170. Martinez-Nava GA, Burguete-Garcia AI, Lopez-Carrillo L, et al. PPARγ and PPARGC1B polymorphisms modify the association between phthalate metabolites and breast cancer risk. Biomarkers. 2013;18:493–501.

    Article  CAS  PubMed  Google Scholar 

  171. Morgan M, Deoraj A, Felty Q, Roy D. Environmental estrogen-like endocrine disrupting chemicals and breast cancer. Mol Cell Endocrinol. 2017;457:89–102.

    Article  CAS  PubMed  Google Scholar 

  172. Tindula G, Murphy SK, Grenier C, et al. DNA methylation of imprinted genes in Mexican-American newborn children with prenatal phthalate exposure. Epigenomics. 2018;10:1011–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Chen CH, Jiang SS, Chang IS, et al. Association between fetal exposure to phthalate endocrine disruptor and genome-wide DNA methylation at birth. Environ Res. 2018;162:261–70.

    Article  CAS  PubMed  Google Scholar 

  174. Chen CC, Wang SL, Wu MT, et al. Exposure estimation for risk assessment of the phthalate incident in Taiwan. PLoS One. 2016;11:e0151070.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Li Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wen, HJ., Huang, HB., Tsai, TL., Wang, SL. (2020). Phthalates. In: Kishi, R., Grandjean, P. (eds) Health Impacts of Developmental Exposure to Environmental Chemicals. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-0520-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0520-1_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0519-5

  • Online ISBN: 978-981-15-0520-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics