Skip to main content

Damage Detection for Structural Health Monitoring of Bridges as a Knowledge Discovery in Databases Process

  • Chapter
  • First Online:
Data Mining in Structural Dynamic Analysis

Abstract

The structural health monitoring (SHM) field is concerned with the increasing demand for improved and more continuous condition assessment of engineering infrastructures to better face the challenges presented by modern societies. Thus, the applicability of computer science techniques for SHM applications has attracted the attention of researchers and practitioners in the last few years, especially to detect damage in structures under operational and environmental conditions. In the SHM for bridges, the damage detection can be seen as the end of a process to extract knowledge regarding the structural state condition from vibration response measurements. In that sense, the damage detection has some similarities with the Knowledge Discovery in Databases (KDD) process. Therefore, this chapter intends to pose damage detection in bridges in the context of the KDD process, where data transformation and data mining play major roles. The applicability of the KDD for damage detection is evaluated on the well-known monitoring data sets from the Z-24 Bridge, where several damage scenarios were carried out under severe operational and environmental effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernal, D., Gunes, B.: Flexibility based approach for damage characterization: benchmark application. J. Eng. Mech. 130(1), 61–70 (2004)

    Google Scholar 

  2. Bilenko, M., Richardson, M.: Predictive client-side profiles for personalized advertising. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’11, pp 413–421. ACM, New York (2011)

    Google Scholar 

  3. Borne, K.D.: Astroinformatics: data-oriented astronomy research and education. Earth Sci. Inf. 3(1), 5–17 (2010)

    Google Scholar 

  4. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control, 4th edn. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  5. Brahma, P.P., Wu, D., She, Y.: Why deep learning works: a manifold disentanglement perspective. IEEE Trans. Neural Netw. Learn. Syst. 27(10), 1997–2008 (2016)

    MathSciNet  Google Scholar 

  6. Castanedo, F.: A review of data fusion techniques. Sci. World J. 2013 (2013)

    Google Scholar 

  7. Catbas, F.N., Aktan, A.E.: Condition and damage assessment: issues and some promising indices. J. Struct. Eng. 128(8), 1026–1036 (2002)

    Google Scholar 

  8. Catbas, F.N., Gul, M., Burkett, J.L.: Conceptual damage-sensitive features for structural health monitoring: laboratory and field demonstrations. Mech. Syst. Signal Process. 22(7), 1650–1669 (2008)

    ADS  Google Scholar 

  9. Cross, E.J., Manson, G., Worden, K., Pierce, S.G.: Features for damage detection with insensitivity to environmental and operational variations. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 468(2148), 4098–4122 (2012). https://doi.org/10.1098/rspa.2012.0031

    Article  ADS  Google Scholar 

  10. Cross, E., Koo, K., Brownjohn, J., Worden, K.: Long-term monitoring and data analysis of the tamar bridge. Mech. Syst. Signal Process. 35(1–2), 16–34 (2013)

    ADS  Google Scholar 

  11. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodological) 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  12. Deng, J., Li, J., Wang, D.: Knowledge discovery from vibration measurements. Sci. World J. 2014(1), 1–15 (2014)

    Google Scholar 

  13. Farrar, C.R., Jauregui, D.A.: Comparative study of damage identification algorithms applied to a bridge: II. Numerical study. Smart Mater. Struct. 7(5), 720 (1998)

    Google Scholar 

  14. Farrar, C.R., JLieven N.A.: Damage prognosis: the future of structural health monitoring. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 365(1851), 623–632 (2007)

    ADS  Google Scholar 

  15. Farrar, C.R., Worden, K.: An introduction to structural health monitoring. Philos. Trans. R. Soc. A 365(1851), 303–315 (2007)

    ADS  Google Scholar 

  16. Farrar, C.R., Worden, K.: Damage-Sensitive Features, vol. 7, pp. 161–243. Wiley, New York (2012)

    Google Scholar 

  17. Farrar, C.R., Doebling, S.W., Nix, D.A.: Vibration-based structural damage identification. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 359(1778), 131–149 (2001)

    ADS  MATH  Google Scholar 

  18. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: The kdd process for extracting useful knowledge from volumes of data. Commun. ACM 39(11), 27–34 (1996). https://doi.org/10.1145/240455.240464

    Google Scholar 

  19. Figueiredo, E.: Damage identification in civil engineering infrastructure under operational and environmental conditions. Ph.D. thesis, Doctor of Philosophy Dissertation in Civil Engineering, Faculty of Engineering, University of Porto (2010)

    Google Scholar 

  20. Figueiredo, E., Cross, E.: Linear approaches to modeling nonlinearities in long-term monitoring of bridges. J. Civ. Struct. Health Monit. 3(3), 187–194 (2013)

    Google Scholar 

  21. Figueiredo, E., Santos, A.: Machine learning algorithms for damage detection, pp 1–39 (2018). https://doi.org/10.1142/9781786344977_0001

    Google Scholar 

  22. Figueiredo, E., Park, G., Figueiras, J., Farrar, C., Worden, K.: Structural health monitoring algorithm comparisons using standard datasets. LANL Technical report LA-14393, Los Alamos National Laboratory, Los Alamos, New Mexico, USA (2009)

    Google Scholar 

  23. Figueiredo, E., Todd, M.D., Farrar, C.R., Flynn, E.: Autoregressive modeling with state-space embedding vectors for damage detection under operational and environmental variability. Int. J. Eng. Sci. 48(10), 822–834 (2010)

    Google Scholar 

  24. Figueiredo, E., Park, G., Farrar, C.R., Worden, K., Figueiras, J.: Machine learning algorithms for damage detection under operational and environmental variability. Struct. Health Monit. 10(6), 559–572 (2011)

    Google Scholar 

  25. Figueiredo, E., Radu, L., Worden, K., Farrar, C.R.: A Bayesian approach based on a Markov-chain Monte Carlo method for damage detection under unknown sources of variability. Eng. Struct. 80, 1–10 (2014)

    Google Scholar 

  26. Figueiredo, E., Moldovan, I., Santos, A., Campos, P., Costa, J.C.: Finite element-based machine learning approach to detect damage in bridges under operational and environmental variations. J. Bridge Eng. 24(7), 04019061 (2019)

    Google Scholar 

  27. Gerlein, E.A., McGinnity, M., Belatreche, A., Coleman, S.: Evaluating machine learning classification for financial trading: an empirical approach. Exp. Syst. Appl. 54, 193–207 (2016)

    Google Scholar 

  28. Holzinger, A.: Trends in interactive knowledge discovery for personalized medicine: cognitive science meets machine learning. IEEE Intel. Inf. Bull. 15(1), 6–14 (2014)

    Google Scholar 

  29. Holzinger, A., Dehmer, M., Jurisica, I.: Knowledge discovery and interactive data mining in bioinformatics—state-of-the-art, future challenges and research directions. BMC Bioinform. 15(6), I1 (2014)

    Google Scholar 

  30. Kamyshanska, H., Memisevic, R.: The potential energy of an autoencoder. IEEE Trans. Pattern Anal. Mach. Intel. 37(6), 1261–1273 (2015)

    Google Scholar 

  31. Kang, G., Gao, S., Yu, L., Zhang, D.: Deep architecture for high-speed railway insulator surface defect detection: denoising autoencoder with multitask learning. IEEE Trans. Instrum. Meas, 1–12 (2018)

    Google Scholar 

  32. Kinemetrics: Operation instructions for FBA 11 force balance accelerometer, part number 105610. Kinemetrics/Systems Inc., 222 Vista Venue, Pasadena, California, 91107 USA (1991)

    Google Scholar 

  33. Kinemetrics: Operation instructions for FBA 23 force balance accelerometer, part number 105610. Kinemetrics/Systems Inc., 222 Vista Venue, Pasadena, California, 91107 USA (1991)

    Google Scholar 

  34. Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 37(2), 233–243 (1991)

    Google Scholar 

  35. Ma, M.L., Wang, G.L., Miao, D.M., Xian, G.J.: Applying KDD to a structure health monitoring system based on a real sited bridge: model reshaping case. In: Mechanical Science and Engineering IV, Trans Tech Publications, Applied Mechanics and Materials, vol. 472, pp. 535–538 (2014)

    Google Scholar 

  36. Maeck, J., Roeck, G.D.: Dynamic bending and torsion stiffness derivation from modal curvatures and torsion rates. J. Sound Vib. 225(1), 153–170 (1999)

    ADS  Google Scholar 

  37. McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley Series in Probability and Statistics. Wiley, New York (2000)

    MATH  Google Scholar 

  38. Oh, C.K., Sohn, H., Bae, I.H.: Statistical novelty detection within the Yeongjong suspension bridge under environmental and operational variations. Smart Mater. Struct. 18(12), 125022 (2009)

    Google Scholar 

  39. Overbey LA (2008) Time series analysis and feature extraction techniques for structural health monitoring applications. Ph.D. thesis, UC San Diego

    Google Scholar 

  40. Peeters, B., Roeck, G.D.: Reference-based stochastic subspace identification for output-only modal analysis. Mech. Syst. Signal Process. 13(6), 855–878 (1999)

    ADS  Google Scholar 

  41. Peeters, B., Roeck, G.D.: One-year monitoring of the Z24-Bridge: environmental effects versus damage events. Earthq. Eng. Struct. Dyn. 30(2), 149–171 (2001)

    Google Scholar 

  42. Peeters, B., Maeck, J., Roeck, G.D.: Vibration-based damage detection in civil engineering: excitation sources and temperature effects. Smart Mater. Struct. 10(3), 518–527 (2001)

    ADS  Google Scholar 

  43. Reynders, E., Wursten, G., Roeck, G.D.: Output-only structural health monitoring in changing environmental conditions by means of nonlinear system identification. Struct. Health Monitor. 13(1), 82–93 (2014)

    Google Scholar 

  44. Roeck, G.D.: The state-of-the-art of damage detection by vibration monitoring: the SIMCES experience. Struct. Control. Health Monit. 10(2), 127–134 (2003)

    Google Scholar 

  45. Sampaio, R., Maia, N., Ribeiro, A., Fontul, M., Montalvao, D.: Using the detection and relative damage quantification indicator (drq) with transmissibility. In: Damage Assessment of Structures VII, Trans Tech Publications, Key Engineering Materials, vol. 347, pp. 455–460 (2007)

    Google Scholar 

  46. Santos, A., Figueiredo, E., Silva, M., Sales, C., Costa, J.: Machine learning algorithms for damage detection: Kernel-based approaches. J. Sound and Vib. 363, 584–599 (2016)

    ADS  Google Scholar 

  47. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Google Scholar 

  48. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–656 (1948)

    MathSciNet  MATH  Google Scholar 

  49. Shao, H., Jiang, H., Wang, F., Zhao, H.: An enhancement deep feature fusion method for rotating machinery fault diagnosis. Knowl.-Based Syst. 119, 200–220 (2017)

    Google Scholar 

  50. Silva, M., Santos, A., Figueiredo, E., Santos, R., Sales, C., Costa, J.C.: A novel unsupervised approach based on a genetic algorithm for structural damage detection in bridges. Eng. Appl. Artif. Intel. 52, 168–180 (2016)

    Google Scholar 

  51. Silva, M., Santos, A., Santos, R., Figueiredo, E., Sales, C., Costa, J.C.: Composing robust damage-sensitive features with deep neural networks. In: Proceedings of the 9th European Workshop on Structural Health Monitoring, DEStech Publications (2018)

    Google Scholar 

  52. Silva, M., Santos, A., Santos, R., Figueiredo, E., Sales, C., Costa, J.C.: Deep principal component analysis: an enhanced approach for structural damage identification. Struct. Health Monit. (2018). https://doi.org/10.1177/1475921718799070

    Google Scholar 

  53. Sun, J., Yan, C., Wen, J.: Intelligent bearing fault diagnosis method combining compressed data acquisition and deep learning. IEEE Trans. Instrum. Meas. 67(1), 185–195 (2018)

    Google Scholar 

  54. Van Der Maaten, L., Postma, E., Van den Herik, J.: Dimensionality: a comparative review. Technical report, Tilburg University, Tilburg, Netherlands (2009)

    Google Scholar 

  55. Wen, L., Li, X., Gao, L.: A new two-level hierarchical diagnosis network based on convolutional neural network. IEEE Trans. Instrum. Meas. 1–9 (2019)

    Google Scholar 

  56. Worden, K.: Structural fault detection using a novelty measure. J. Sound Vib. 201(1), 85–101 (1997)

    ADS  MathSciNet  Google Scholar 

  57. Worden, K., Manson, G., Fieller, N.R.J.: Damage detection using outlier analysis. J. Sound Vib. 229(3), 647–667 (2000)

    ADS  Google Scholar 

  58. Yan, R., Chen, X., Mukhopadhyay, S.C.: Advanced Signal Processing for Structural Health Monitoring, pp. 1–11. Springer International Publishing, Cham (2017)

    Google Scholar 

  59. Yuqing, Z., Bingtao, S., Fengping, L., Wenlei, S.: NC machine tools fault diagnosis based on kernel PCA and-nearest neighbor using vibration signals. J. Shock. Vib. 2015 (2015)

    Google Scholar 

  60. Zhou, Y.L., Figueiredo, E., Maia, N.M., Sampaio, R., Pereira, R.: Damage detection and quantification using transmissibility coherence analysis. Struct. Control. Health Monit. 22(10) (2015)

    Google Scholar 

  61. Zhou, Y.L., Maia, N.M., Wahab, M.A.: Damage detection using transmissibility compressed by principal component analysis enhanced with distance measure. J. Vib. Control. (2016). https://doi.org/10.1177/1077546316674544

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elói Figueiredo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silva, M., Santos, A., Figueiredo, E. (2019). Damage Detection for Structural Health Monitoring of Bridges as a Knowledge Discovery in Databases Process. In: Zhou, Y., Wahab, M., Maia, N., Liu, L., Figueiredo, E. (eds) Data Mining in Structural Dynamic Analysis. Springer, Singapore. https://doi.org/10.1007/978-981-15-0501-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0501-0_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0500-3

  • Online ISBN: 978-981-15-0501-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics