Skip to main content

Bio-nano Approaches: Green and Sustainable Treatment Technology for Textile Effluent Challenges

  • Chapter
  • First Online:

Abstract

Globally, the textile industry is considered as a major contributor to the development of the country. However, the improper disposal of colored wastewater in the ecosystem leads to various environmental and health-related problems. Color removal, mainly from the textile wastewater effluent, has been the biggest challenge from the past decade. Various physiochemical, biotechnological, and nanotechnology methods have been used to overcome these challenges. However, no such method has been reported for effective and economical treatment for textile wastewater. Effluent from textile processes such as dyeing, manufacturing, and finishing processes contains a high concentration of chemicals, including acids, binders, salts, etc., which are hazardous to environment and ecosystem. Furthermore, various chemicals used for the sizing, softening, and brightening of the fabric are also present in the wastewater. Therefore, textile wastewater effluent needs an eco-friendly and economically viable method for effective treatment. This book chapter provides a critical review on the advancement in treatment technologies available for decolorization, degradation, and mineralization of the textile wastewater and also suggested an effective and economically viable alternative for textile effluent.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abou MF, El-trass A, El-sigeny S (2015) Synthesis of polyamidoamine dendrimer (PAMAM/CuS/AA) nanocomposite and its application in the removal of Isma acid fast yellow G Dye. 29. https://doi.org/10.1002/pat.3517

  • Afkhami A, Saber-tehrani M, Bagheri H (2010) Simultaneous removal of heavy-metal ions in wastewater samples using. J Hazard Mater 181(1–3):836–844. https://doi.org/10.1016/j.jhazmat.2010.05.089

    Article  CAS  Google Scholar 

  • Akbari A, Desclaux S, Remigy JC, Aptel P (2002) Treatment of textile dye effluents using a new photografted nanofiltration membrane. Desalination 149:101–107

    Article  CAS  Google Scholar 

  • Akbari A, Desclaux S, Rouch JC, Aptel P, Remigy JC (2006) New UV-photografted nanofiltration membranes for the treatment of colored textile dye effluents. 286:342–350. https://doi.org/10.1016/j.memsci.2006.10.024

  • Al-Fawwaz AT, Abdullah M (2016) Decolorization of methylene blue and malachite green by immobilized Desmodesmus sp. isolated from North Jordan. Int J Environ Sci Dev 7:95

    Article  CAS  Google Scholar 

  • Ali SAM, Akthar N (2014) A study on bacterial decolorization of crystal violet dye by Clostridium perfringens, Pseudomonas aeruginosa and Proteus vulgaris. Res Article Biol Sci 4:89–96

    CAS  Google Scholar 

  • All C, Moulin P, Maisseu M, Charbit F (2006) Treatment and reuse of reactive dyeing effluents. 269:15–34. https://doi.org/10.1016/j.memsci.2005.06.014

  • Alvarez MS, Rodriguez A, Sanroman MA, Deive FJ (2015) Microbial adaptation to ionic liquids. RSC Adv 5(23):17379–17382

    Article  CAS  Google Scholar 

  • Amini M, Arami M, Mohammad N, Akbari A (2011) Dye removal from colored textile wastewater using acrylic grafted nanomembrane. Desalination 267(1):107–113. https://doi.org/10.1016/j.desal.2010.09.014

    Article  CAS  Google Scholar 

  • Anjum M, Miandad R, Waqas M, Gehany F, Barakat MA (2016) Remediation of wastewater using various nano- materials. Arab J Chem. https://doi.org/10.1016/j.arabjc.2016.10.004

  • Aragaw TA, Asmare AM (2018) Phycoremediation of textile wastewater using indigenous microalgae. Water Pract Technol 13(2):274–284

    Article  Google Scholar 

  • Babu BR, Parande AK, Raghu S, Kumar TP (2007) Cotton textile processing: waste generation and effluent treatment. Text Technol 11:141–153

    CAS  Google Scholar 

  • Barr DP, Aust SD (1994) Mechanisms the white rot fungi use to degrade pollutants. Environ Sci Technol 28:79A–87A

    Article  Google Scholar 

  • Caparkaya D, Cavas L (2008) Biosorption of methylene blue by a brown alga Cystoseirabarbatula Kützing. Acta Chim Slov 55(3):547–553

    Google Scholar 

  • Celia MP, Suruthi S (2016) Textile dye degradation using bacterial strains isolated from textile mill effluent. Int J Appl Res 2:337–341

    Google Scholar 

  • Cengiz S, Cavas L (2008) Removal of methylene blue by invasive marine seaweed: Caulerpa racemosa var. cylindracea. Bioresour Technol 99(7):2357–2363

    Article  CAS  Google Scholar 

  • Chairin T, Nitheranont T, Watanabe A, Asada Y, Khanongnuch C, Lumyong S (2013) Biodegradation of bisphenol A and decolorization of synthetic dyes by laccase from white-rot fungus, Trametes polyzona. Appl Biochem Biotechnol 169(2):539–545

    Article  CAS  Google Scholar 

  • Chatha SA, Asgher M, Iqbal HM (2017) Enzyme-based solutions for textile processing and dye contaminant biodegradation—a review. Environ Sci Pollut Res 24(16):14005–14018

    Article  Google Scholar 

  • Chen H (2006) Recent advances in azo dye degrading enzyme research. Curr Protein Pept Sci 7(2):101–111

    Article  CAS  Google Scholar 

  • Chen Z, Jin X, Chen Z, Megharaj M, Naidu R (2011) Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. J Colloid Interface Sci 363(2):601–607. https://doi.org/10.1016/j.jcis.2011.07.057

    Article  CAS  Google Scholar 

  • Choo HK, Choi JS, Hwang DE (2007) Effect of coagulant types on textile wastewater reclamation in a combined coagulation/ultrafiltration system. Desalination 202(1–3):262–270

    Article  CAS  Google Scholar 

  • Chunfeng W, Jiansheng LI, Lianjun W, Xiuyun SUN (2009) Adsorption of dye from wastewater by zeolites synthesized from fly ash: kinetic and equilibrium studies. Chin J Chem Eng 17(3):513–521. https://doi.org/10.1016/S1004-9541(08)60239-6

    Article  Google Scholar 

  • Correia VM, Stephenson T, Judd JS (1994) Characterisation of textile wastewaters – a review. Environ Technol 15(10):917–929

    Article  CAS  Google Scholar 

  • Daneshvar N, Ayazloo M, Khataee AR, Pourhassan M (2007) Biological decolorization of dye solution containing Malachite Green by microalgae Cosmarium sp. Bioresour Technol 98(6):1176–1182

    Article  CAS  Google Scholar 

  • Deniz F, Karaman S (2011) Removal of an azo-metal complex textile dye from colored aqueous solutions using an agro-residue. Microchem J 99(2):296–302

    Article  CAS  Google Scholar 

  • Devi S, Murugappan A, Kannan RR (2016) Textile dye wastewater treatment using freshwater algae in packed-bed reactor: modeling. Desalin Water Treat 57(38):17995–18002. https://doi.org/10.1080/19443994.2015.1085910

    Article  CAS  Google Scholar 

  • Diller BG, Mogahzy YE, Inglesby MK, Zeronian SH (2016) Effects of scouring with enzymes, organic solvents, and caustic soda on the properties of hydrogen peroxide bleached cotton yarn. Text Res J 68(12):920–929

    Article  Google Scholar 

  • Duchemin B, Thuault A, Vicente A, Rigaud B, Fernandez C, Eve S (2012) Ultrastructure of cellulose crystallites in flax textile fibres. Cellulose 19(6):1837–1854

    Article  CAS  Google Scholar 

  • El-kassas HY (2014) Bioremediation of the textile waste effluent by Chlorella vulgaris. Egypt J Aquat Res 40:301–308

    Article  Google Scholar 

  • El-safty SA, Shahat A, Ismael M (2012) Mesoporous aluminosilica monoliths for the adsorptive removal of small organic pollutants. J Hazard Mater 201–202:23–32. https://doi.org/10.1016/j.jhazmat.2011.10.088

    Article  CAS  Google Scholar 

  • Elisangela F, Andrea Z, Fabio DG, de Menezes Cristiano R, Regina DL, Artur C-P (2009) Biodegradation of textile azo dyes by a facultative Staphylococcus arlettae strain VN-11 using a sequential microaerophilic/aerobic process. Int Biodeterior Biodegrad 63(3):280–288

    Article  CAS  Google Scholar 

  • Everts CJ, Kanwar RS (1994) Evaluation of rhodamine WT as an adsorbed tracer in an agricultural soil. J Hydrol 153:53–70. https://doi.org/10.1016/0022-1694(94)90186-4

    Article  CAS  Google Scholar 

  • Ezhilarasu A (2016) Textile industry dye degrading by bacterial strain Bacillus sp. Int J Adv Res Biol Sci 3(3):211–226

    CAS  Google Scholar 

  • Falavarjani ER, Khorasani AC, Ghoreishi SM (2012) Microbial reduction of monoazo and diazo-linked dyes by Pseudomonas aeruginosa and Pseudomonas putida. J Pure Appl Microbiol 6:1559–1570

    CAS  Google Scholar 

  • Ferreira BC, Teodoro FS, Mageste AB, Gil LF, de Freitas RP, Gurgel LV (2015) Application of a new carboxylate-functionalized sugarcane bagasse for adsorptive removal of crystal violet from aqueous solution: kinetic, equilibrium and thermodynamic studies. Ind Crop Prod 65:521–534

    Article  CAS  Google Scholar 

  • Ghaly AE, Ananthashankar R, Alhattab MVVR, Ramakrishnan VV (2014) Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Process Technol 5:1–18

    Google Scholar 

  • Ghosh S (2008) Extraction of azo dye molecules from aqueous solution using polyamidoamine dendrimer based polymeric network. J Chem Res 2008:419–421

    Article  Google Scholar 

  • Ghosh P, Samanta AK, Basu G (2004) Effect of selective chemical treatments of jute fibre on textile-related properties and processibility. Ind J Fibre Text Res 29(1):85–99

    CAS  Google Scholar 

  • Gulati D, Jha I (2014) Microbial decolorization of dye reactive blue 19 by bacteria isolated from dye effluent contaminated soil. Int J Curr Microbiol App Sci 3:913–922

    CAS  Google Scholar 

  • Gupta VK, Bhushan R, Nayak A, Singh P, Bhushan B (2014) Biosorption and reuse potential of a blue green alga for the removal of hazardous reactive dyes from aqueous solutions. Biorem J 18(3):179–191

    Article  CAS  Google Scholar 

  • Gupta VK, Tyagi I, Sadegh H, Shahryari-ghoshekandi R (2015) Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: a review. 34(3):195–214. https://doi.org/10.3923/std.2015.195.214

  • Harane RS, Adivarekar RV (2017) Sustainable processes for pre-treatment of cotton fabric. Text Cloth Sustain 2:2. https://doi.org/10.1186/s40689-016-0012-7

    Article  Google Scholar 

  • Hayati B, Mahmoodi NM, Arami M, Mazaheri F (2011) Dye removal from colored textile wastewater by poly(propylene imine) dendrimer: operational parameters and isotherm studies. 39(7):673–679. https://doi.org/10.1002/clen.201000182

  • Hemapriya J, Vijayanand S (2014) Ecofriendly bioremediation of a triphenylmethane dye by textile effluent adapted bacterial strain vp-64. Int J Curr Microbiol App Sci 3(9):983–992

    CAS  Google Scholar 

  • Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB (2016) A critical review on textile wastewater treatments : possible approaches. J Environ Manag 182:351–366. https://doi.org/10.1016/j.jenvman.2016.07.090

    Article  CAS  Google Scholar 

  • Homyak GJL, Dutta J, Tabbals HF, Rao A (2008) Introduction to nanoscience. CRG Press, Boca Raton, FL

    Google Scholar 

  • Hruby CE, Soupir ML, Moorman TB, Shelley M, Kanwar RS (2016) Effects of tillage and poultry manure application rates on Salmonella and fecal indicator bacteria concentrations in tiles draining Des Moines Lobe soils. J Environ Manag 171:60–69

    Article  CAS  Google Scholar 

  • Hu ZG, Zhang J, Chan WL, Szeto YS (2006) The sorption of acid dye onto chitosan nanoparticles. 47:5838–5842. https://doi.org/10.1016/j.polymer.2006.05.071

  • Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. 212:317–331. https://doi.org/10.1016/j.jhazmat.2011.10.016

  • Imran M, Arshad M, Asghar HN, Asghar M, Crowley DE (2014) Potential of Shewanella sp. strain IFN4 to decolorize azo dyes under optimal conditions. Int J Agric Biol 16:578–584

    CAS  Google Scholar 

  • Jilani S (2015) Bioremediation application for textile effluent treatment. 23(1):26–34. https://doi.org/10.5829/idosi.mejsr.2015.23.01.9227

  • Joshi N, Rathod M, Vyas D, Kumar R, Mody KH (2019) Multiple pollutants removal from industrial wastewaters using a novel bioflocculant produced by Bacillus licheniformis NJ3. Environ Prog Sustain Energy 38:S306–S314

    Article  CAS  Google Scholar 

  • Joutey NT, Bahafid W, Sayel H, Ghachtouli EN (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. In: Biodegradation-life of science. InTech, Rijeka

    Google Scholar 

  • Kalaiarasi K, Lavanya A, Amsamani S, Bagyalakshmi G (2012) Decolourization of textile dye effluent by non-viable biomass of Aspergillus fumigatus. Braz Arch Biol Technol 55(3):471–476

    Article  CAS  Google Scholar 

  • Kandisa RV, Kv NS, Shaik KB, Gopinath R (2016) Bioremediation & biodegradation dye removal by adsorption: a review. 7(6). https://doi.org/10.4172/2155-6199.1000371

  • Karacakaya P, Kılıç NK, Duygu E, Dönmez G (2009) Stimulation of reactive dye removal by cyanobacteria in media containing triacontanol hormone. J Hazard Mater 172(2–3):1635–1639

    Article  CAS  Google Scholar 

  • Kerebo A, Desta A, Duraisamy R (2016) Removal of methyl violet from synthetic wastewater using nano aluminium oxyhydroxide. Int J Eng Res Dev 12(8):22–28

    Google Scholar 

  • Khajeh M, Laurent S, Dastafkan K (2013) Nanoadsorbents: classification, preparation, and applications (with Emphasis on Aqueous Media). https://doi.org/10.1021/cr400086v

  • Khataee AR, Vafaei F, Jannatkhah M (2013) Biosorption of three textile dyes from contaminated water by filamentous green algal Spirogyra sp.: kinetic, isotherm and thermodynamic studies. Int Biodeterior Biodegrad 83:33–40. https://doi.org/10.1016/j.ibiod.2013.04.004

    Article  CAS  Google Scholar 

  • Khatoon N, Sardar M (2017) Efficient removal of toxic textile dyes using silver nanocomposites. J Nanosci: Curr Res 2(3):2–6

    Google Scholar 

  • Kiliç NK, Dönmez G (2012) Remazol blue removal and EPS production by Pseudomonas aeruginosa and Ochrobactrum sp. Pol J Environ Stud 21(1)

    Google Scholar 

  • Kochher S, Kumar J (2011) Microbial decolourization of crystal violet by Bacillus subtilis. Biol Forum Int J 3:82–86

    Google Scholar 

  • Kumar KV, Sivanesan S, Ramamurthi V (2005) Adsorption of malachite green onto Pithophora sp., a fresh water algae: equilibrium and kinetic modelling. Process Biochem 40(8):2865–2872

    Article  CAS  Google Scholar 

  • Kumar PS, Narayan AS, Dutta A (2017) Nanochemicals and effluent treatment in textile industries. https://doi.org/10.1007/978-981-10-2188-6

  • Lade H, Govindwar S, Paul D (2015a) Low-cost biodegradation and detoxification of textile azo dye CI reactive blue 172 by Providencia rettgeri strain HSL1. J Chem

    Google Scholar 

  • Lade H, Kadam A, Paul D, Govindwar S (2015b) Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes. EXCLI J 14:158–174

    Google Scholar 

  • Lavanya C (2014) Degradation of toxic dyes: a review. Int J Curr Microbiol App Sci 3(6):189–199

    CAS  Google Scholar 

  • Liu L, Bilal M, Duan X, Iqbal HM (2019) Mitigation of environmental pollution by genetically engineered bacteria—current challenges and future perspectives. Sci Total Environ. 444–454 doi.org/https://doi.org/10.1016/j.scitotenv.2019.02.390

  • Lopes CN, Petrus JCC, Riella HG (2005) Color and COD retention by nanofiltration membranes. 172:77–83. https://doi.org/10.1016/j.desal.2004.07.030

  • Machado FM, De Pelotas UF, Bergmann CP, Adebayo M, State O (2012) Adsorption of a textile dye from aqueous solutions by carbon nanotubes adsorption of a textile dye from aqueous solutions by carbon nanotubes, (December). https://doi.org/10.1590/S1516-14392013005000204

  • Madhav S, Ahamad A, Singh P, Mishra PK (2018) A review of textile industry: wet processing, environmental impacts, and effluent treatment methods:31–41. https://doi.org/10.1002/tqem.21538

  • Mahapatra A, Mishra BG, Hota G (2013) Electrospun Fe 2 O 3 – Al 2 O 3 nanocomposite fibers as efficient adsorbent for removal of heavy metal ions from aqueous solution. J Hazard Mater:258, 116–259, 123. https://doi.org/10.1016/j.jhazmat.2013.04.045

  • Mahmoud AM, Ibrahim FA, Shaban SA, Youssef NA (2015) Adsorption of heavy metal ion from aqueous solution by nickel oxide nano catalyst prepared by different methods. Egypt J Pet. https://doi.org/10.1016/j.ejpe.2015.02.003

  • Manekar P, Patkar G, Aswale P, Mahure M, Nandy T (2014) Detoxifying of high strength textile effluent through chemical and bio-oxidation processes. Bioresour Technol 157:44–51

    Article  CAS  Google Scholar 

  • Mani S, Bharagava RN (2018) Textile industry wastewater: environmental and health hazards and treatment approaches, (December)

    Google Scholar 

  • Marungrueng K, Pavasant P (2007) High performance biosorbent (Caulerpa lentillifera) for basic dye removal. Bioresour Technol 98(8):1567–1572

    Article  CAS  Google Scholar 

  • Mills A, Davies RH, Worsley D (1982) Water purification by semiconductor photocatalysis

    Google Scholar 

  • Modi S, Pathak B, Fulekar MH (2015) Microbial synthesized silver nanoparticles for decolorization and biodegradation of azo dye compound. J Environ Nanotechnol 4:37–46

    CAS  Google Scholar 

  • Moon B, Park Y, Park K (2011) Fenton oxidation of Orange II by pre-reduction using nanoscale zero-valent iron. Desalination 268(1–3):249–252. https://doi.org/10.1016/j.desal.2010.10.036

    Article  CAS  Google Scholar 

  • Moussavi G, Mahmoudi M (2009) Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. 168:806–812. https://doi.org/10.1016/j.jhazmat.2009.02.097

  • Nguyen AK, Fu CC, Juang SK (2016) Biosorption and biodegradation of a sulfur dye in high-strength dyeing wastewater by Acidithiobacillus thiooxidans. J Environ Manag 182:265–271

    Article  CAS  Google Scholar 

  • Oak U, Ghattargi V, Pawar S, Bhole B (2016) Degradation of Drimarene Red, a reactive textile dye by an extremophilic Bacillus sp. isolated from fresh water. Int J Appl Pure Sci Agric 2:105–113

    Google Scholar 

  • Ozer A, Akkaya G, Turabik M (2006) The removal of acid red 274 from wastewater: combined biosorption and biocoagulation with Spirogyra rhizopus. Dyes Pigments 71(2):83–89

    Article  CAS  Google Scholar 

  • Pokharia A, Ahluwalia SS (2016) Decolorization of Xenobiotic Azo Dye-Black WNN by immobilized Paenibacillus alvei MTCC 10625. Int J Environ Bioremed Biodegrad 4:35–46

    CAS  Google Scholar 

  • Prasad A, Rao KVB (2011) Physicochemical analysis of textile effluent and decolorization of textile azo dye by Bacillus endophyticus strain VITABR13. IIOAB J 2(2):55–62

    CAS  Google Scholar 

  • Przystas W, Zablocka-Godlewska E, Grabinska-Sota E (2015) Efficacy of fungal decolorization of a mixture of dyes belonging to different classes. Braz J Microbiol 46(2):415–424

    Article  Google Scholar 

  • Qin Q, Sun T, Yin W, Xu Y (2017) Rapid and efficient removal of methylene blue by freshly prepared manganese dioxide. Cogent Eng 7:1–10. https://doi.org/10.1080/23311916.2017.1345289

    Article  Google Scholar 

  • Rajabi M, Mahanpoor K, Moradi O (2017) Removal of dye molecules from aqueous solution by carbon nanotubes and carbon nanotube functional groups : critical review. RSC Adv:47083–47090. https://doi.org/10.1039/c7ra09377b.

  • Rajendran R, Prabhavathy P, Karthiksundaram S, Pattabi S, Dinesh Kumar S, Santhanam P (2015) Biodecolorization and bioremediation of denim industrial wastewater by adapted bacterial consortium immobilized on inert polyurethane foam (PUF) matrix: a first approach with biobarrier model. Pol J Microbiol 64(4):329–338

    Article  CAS  Google Scholar 

  • Ramalingam S, Ponnusamy KS (2015) Novel adsorbent from agricultural waste (cashew NUT shell) for methylene blue dye removal: optimization by response surface methodology. Water Resources Ind 11:64–70

    Article  Google Scholar 

  • Raman CD, Kanmani S (2016) Textile dye degradation using nano zero valent iron : a review. J Environ Manag 177:341–355. https://doi.org/10.1016/j.jenvman.2016.04.034

    Article  CAS  Google Scholar 

  • Regan I (1962) Enzymes and their application in textile processing, especially desizing. J Soc Dye Colour 78(11):533–542

    Article  CAS  Google Scholar 

  • Rippon JA, Evans DJ (2012) Improving the properties of natural fibres by chemical treatments. In: Handbook of natural fibres. Oxford, Woodhead Publishing, pp 63–140

    Google Scholar 

  • Robinson T, Chandran B, Nigam P (2002) Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Res 36:2824–2830

    Article  CAS  Google Scholar 

  • Rott U, Minke R (1999) Overview of wastewater treatment and recycling in the textile processing industry. Water Sci Technol 40(1):137–144

    Article  CAS  Google Scholar 

  • Sadaf S, Bhatti HN, Bibi I (2013) Efficient removal of disperse dye by mixed culture of Ganoderma lucidum and Coriolus versicolor. Pak J Agr Sci 50:261–266

    Google Scholar 

  • Sadeghi-kiakhani M, Arami M, Gharanjig K (2012) Dye removal from colored-textile wastewater using chitosan-PPI dendrimer hybrid as a biopolymer : optimization , kinetic , and isotherm studies:1–13. https://doi.org/10.1002/app.37615

  • Samagata S, Shah P (2014) Application of nanoscale zero-valent iron for wastewater treatment. Int Conf Multidiscip Res Pract I(VII):342–344

    Google Scholar 

  • Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42(1):138–157

    Article  CAS  Google Scholar 

  • Sarayu K, Sandhya S (2010) Aerobic biodegradation pathway for Remazol Orange by Pseudomonas aeruginosa. Appl Biochem Biotechnol 160(4):1241–1253

    Article  CAS  Google Scholar 

  • Satapanajaru T, Chompuchan C, Suntornchot P, Pengthamkeerati P (2011) Enhancing decolorization of reactive black 5 and reactive red 198 during nano zerovalent iron treatment. Desalination 266(1–3):218–230. https://doi.org/10.1016/j.desal.2010.08.030

    Article  CAS  Google Scholar 

  • Senthilkumar S, Perumalsamy M, Prabh HJ (2014) Decolourization potential of white-rot fungus Phanerochaete chrysosporium on synthetic dye bath effluent containing Amido black 10B. J Saudi Chem Soc 18:845–853

    Article  Google Scholar 

  • Serpone N, Ah-You YK, Tran TP, Harris R, Pelizzetti E, Hidaka R (1987) AM1 simulated sunlight photoreduction and elimination of Hg(II) and CH3Hg(II) chloride salts from aqueous suspensions of titanium dioxide. Sol Energy 39(6):491–498

    Article  CAS  Google Scholar 

  • Sethi S, Malviya MM, Sharma N, Gupta S (2012) Biodecolorizationof azo dye by microbial isolates from textile effluent and sludge. Univers J Environ Res Technol 2(6):582–590

    CAS  Google Scholar 

  • Shah M (2014) Efficacy of Rhodococcus rhodochrous in microbial degradation of toludine dye. J Pet Environ Biotechnol 5(4):187

    Article  Google Scholar 

  • Sharma N, Bhatnagar P, Chatterjee S, John PJ, Soni IP (2017) Bio nanotechnological intervention : a sustainable alternative to treat dye bearing waste waters. Ind J Pharm Biomed Sci (IJPBR) 5(1):17–24

    CAS  Google Scholar 

  • Sharma R, Sharma S (2015) Biosorption of Alizarin by Burkholderia sp. Int J Curr Microbiol App Sci 4:112–122

    CAS  Google Scholar 

  • Shinkafi MS, Mohammed IU, Audu AA (2015) Degradation and decolourization of textile dyes effluents. Eur J Biotech Biosci 3:06–11

    Google Scholar 

  • Singh L, Singh VP (2010) Microbial degradation and decolorization of dyes in semi-solid medium by the fungus–Trichoderma harzianum. Environ We Int J Sci Tech 5:147–153

    Google Scholar 

  • Singh AK, Singh R, Soam A, Shahi SK (2012) Degradation of textile dye orange 3R by Aspergillus strain (MMF3) and their culture optimization. Curr Disc 1:7–12

    Google Scholar 

  • Sinha S, Nigam S, Singh R (2015) Potential of Nostocmuscorum for the decolorisation of textiles dye RGB-red. Int J Pharm Bio Sci 6:1092–1100

    CAS  Google Scholar 

  • Song ZY, Zhou JT, Wang J, Yan B, Du CH (2003) Decolorization of azo dyes by Rhodobactersphaeroides. Biotechnol Lett 25(21):1815–1818

    Article  CAS  Google Scholar 

  • Tahir H, Sultan M, Jahanzeb Q (2008) Removal of basic dye methylenblue byusing bioabsorbents Ulva lactuca and Sargassum. Afr J Biotechnol 7:2649–2655

    Article  CAS  Google Scholar 

  • Taleb M, El-Trass A, El-Sigeny S (2015) Synthesis of polyamidoamine dendrimer (PAMAM/CuS/AA) nanocomposite and its application in the removal of Isma acid fast yellow G Dye. Polym Adv Technol 2015(26):994–1002

    Google Scholar 

  • Tanapongpipat A, Khamman C, Pruksathorm K, Hunsom M (2008) Process modification in the scouring process of textile industry. J Clean Prod 16(1):152–158

    Article  Google Scholar 

  • Taylor P, Khaloo SS, Fattahi S (2014a) Enhancing decolorization of Eriochrome Blue Black R during nano-size zero-valent iron treatment using ultrasonic irradiation. Desalin Water Treat:37–41. https://doi.org/10.1080/19443994.2013.801322

  • Taylor P, Rashidi HR, Sulaiman NMN, Hashim NA, Hassan CRC, Ramli MR (2014b) Synthetic reactive dye wastewater treatment by using nano-membrane filtration. Desalin Water Treat:37–41. https://doi.org/10.1080/19443994.2014.912964

  • Thamaraiselvan C, Noel M (2014) Membrane processes for dye wastewater treatment; recent progress in fouling control:37–41. https://doi.org/10.1080/10643389.2014.900242

  • Thanunchanok C, Thitinard N, Akira W, Yasuhiko A, Chartchai K, Saisamorn L (2014) Purification and characterization of the extracellular laccase produced by WR710-1 under solid-state fermentation. J Basic Microbiol 54(1):35–43

    Article  CAS  Google Scholar 

  • Tunc O, Tanacı H, Aksu Z (2009) Potential use of cotton plant wastes for the removal of Remazol Black B reactive dye. J Hazard Mater 163:187–198

    Article  CAS  Google Scholar 

  • Tzanov T, Calafell M, Gübitz G, Cavaco-Paulo A (2001) Bio-preparation of cotton fabrics. Enzym Microb Technol 29:357–362

    Article  CAS  Google Scholar 

  • Uday US, Bandyopadhyay TK, Bhunia B (2016) Bioremediation and detoxification technology for treatment of Dye (s) from textile effluent. In: Textile wastewater treatment. InTech, Rijeka

    Google Scholar 

  • Van Der Bruggen B, Schaep J, Wilms D, Vandecasteele C (1999) Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. J Membr Sci 156:29

    Article  Google Scholar 

  • Vitor V, Corso CR (2008) Decolorization of textile dye by Candida albicans isolated from industrial effluents. J Ind Microbiol Biotechnol 35(11):1353–1357

    Article  CAS  Google Scholar 

  • Wang N, Chu Y, Wu F, Zhao Z, Xu X (2017) Decolorization and degradation of Congo red by a newly isolated white rot fungus, Ceriporia lacerata, from decayed mulberry branches. Int Biodeterior Biodegrad 117:236–244

    Article  CAS  Google Scholar 

  • Wang S, Li H, Xu L (2006) Application of zeolite MCM-22 for basic dye removal from wastewater. 295:71–78. https://doi.org/10.1016/j.jcis.2005.08.006

  • Waring RD, Hallas G (2013) The chemistry and application of dyes. Springer Science & Business Media, Berlin

    Google Scholar 

  • Xu M, Guo J, Kong X (2007a) Fe (III)-enhanced Azo reduction by Shewanella decolorationis S12:1342–1349. https://doi.org/10.1007/s00253-006-0773-z

  • Xu M, Guo J, Sun G (2007b) Biodegradation of textile azo dye by Shewanella decolorationis S12 under microaerophilic conditions:719–726. https://doi.org/10.1007/s00253-007-1032-7

  • Yang YH, Jia BR, Chen B, Li L, (2014) Degradation of recalcitrant aliphatic and aromatic hydrocarbons by a dioxin-degrader Rhodococcus sp. strain p52. Environmental Science and Pollution Research 21 (18):11086–11093.

    Google Scholar 

  • Zheng H, Ou JZ, Strano MS, Kaner RB, Mitchell A (2011) Nanostructured tungsten oxide – properties, synthesis, and applications. Adv Funct Mater 21(12):2175–2196

    Article  CAS  Google Scholar 

  • Zhou SL, Li J, Hong G, Chang C (2013) Dendrimer modified magnetic nanoparticles as adsorbents for removal of dyes:6814–6819. https://doi.org/10.1166/jnn.2013.7784

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandit, P.R. et al. (2020). Bio-nano Approaches: Green and Sustainable Treatment Technology for Textile Effluent Challenges. In: Shah, M., Banerjee, A. (eds) Combined Application of Physico-Chemical & Microbiological Processes for Industrial Effluent Treatment Plant. Springer, Singapore. https://doi.org/10.1007/978-981-15-0497-6_16

Download citation

Publish with us

Policies and ethics