Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 582))

Abstract

The fixed-time trajectory tracking problem of a quadrotor with six degrees of freedom (6-DOF) under bounded disturbances is investigated in this paper. The split-loop design method which divides the quadrotor into position subsystem and attitude subsystem is adopted. Next, the nonsingular fixed-time controllers are developed and both the inner and outer loop can track the expected trajectory within fixed-time. The settling time depends only on the selected control parameters and is independent of the system’s initial state. The stability of the entire system is proved. Finally, the simulation studies based on the quadrotor model illustrate the robustness of the designed fixed-time controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tayebi, A., McGilvray, S.: Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans. Control Syst. Technol. 14(3), 562–571 (2006)

    Article  Google Scholar 

  2. Zhu, W., Du, H., Cheng, Y.: Hovering control for quadrotor aircraft based on finite-time control algorithm. Nonlinear Dyn. 238(7), 111–125 (2013)

    Google Scholar 

  3. Wang, T., Wang, L., Liang, J.: Autonomous control and trajectory tracking of quadrotor helicopter. Comput. Mod. 3, 251–255 (2012)

    Google Scholar 

  4. Matouk, D., Gherouat, O., Abdessemed, F., et al.: Quadrotor position and attitude control via backstepping approach. In: International Conference on Modelling (2016)

    Google Scholar 

  5. Kondak, K., Bernard, M., Meyer, N.: Autonomously flying VTOL-robots: Modeling and control. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 736–741. IEEE. New York (2007)

    Google Scholar 

  6. Gonzlezvzquez, S., Morenovalenzuela, J.: A new nonlinear PI/PID controller for quadrotor posture regulation. In: Electronics, Robotics Automotive Mechanics Conference (2010)

    Google Scholar 

  7. Madani, T., Benallegue, A.: Backstepping Control for a Quadrotor Helicopter (2006)

    Google Scholar 

  8. Freddi, A., Lanzon, A., Longhi, S.: A feedback linearization approach to fault tolerance in quadrotor vehicles. IFAC Proc. Vol. 44(1), 5413–5418 (2011)

    Article  Google Scholar 

  9. Xu, R., Zhang, X., Guo, H., Zhou, M.: Sliding mode tracking control with perturbation estimation for hysteresis nonlinearity of piezo-actuated stages. IEEE Access. 6, 1–13 (2018)

    Article  Google Scholar 

  10. Li, S., Li, B., Geng, Q.: Adaptive sliding mode control for quadrotor helicopters. In: Chinese Control Conference. IEEE, New York (2014)

    Google Scholar 

  11. Jia, P., Zhang, J., Yang, L.: Adaptive non-singular terminal sliding mode control for structural damaged aircraft. In: Control Conference (2015)

    Google Scholar 

  12. Yali, M.A., Zong, Q., Dong, Q., et al.: Fast terminal sliding mode control for quadrotor unmanned aerial vehicle with actuator saturation. Inf. Control (2017)

    Google Scholar 

  13. Du, H., Zhang, J., Zhu, W., et al.: Finite-time consensus control for a group of quadrotor aircraft. In: 2017 Chinese Automation Congress (CAC). IEEE, New York (2017)

    Google Scholar 

  14. Tian, B., Lu, H., Zuo, Z., et al.: Multivariable finite-time output feedback trajectory tracking control of quadrotor helicopters. Int. J. Robust Nonlinear Control (2017)

    Google Scholar 

  15. Yun, H., Zongyu, Z., Zhiguang, S.: Fixed-time terminal sliding mode trajectory tracking control of quadrotor helicopter. In: 2015 34th Chinese Control Conference (CCC). IEEE, New York (2015)

    Google Scholar 

  16. You, M., Zong, Q., Tian, B., et al.: Comprehensive design of uniform robust exact disturbance observer and fixed-time controller for reusable launch vehicles. IET Control Theory Appl. 12(5), 638–648 (2018)

    Article  MathSciNet  Google Scholar 

  17. Liu, J.K.: Sliding Mode Control Design and MATLAB Simulation, 3rd edn. Tsinghua University Press, Beijing (2015)

    Google Scholar 

Download references

Acknowledgements

This work is supposed by the National Natural Science Foundation of China under Grants 61703134, 61703135, 61773151, 61803143 and 61871173, the Natural Science Foundation of Tianjin under Grant 17JCQNJC04400, the Natural Science Foundation of Hebei Province under Grants F2019202369, F2018202279, and No. F2019202363), Youth Foundation of Hebei Educational Committee under (No. QN2018140), Graduate Innovation Foundation of Hebei Province under Grant 220056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Ma, X., Zhang, G., Zhang, Y., Miao, Q. (2020). Fixed-Time Terminal Sliding Mode Control for Quadrotor Aircraft. In: Wang, R., Chen, Z., Zhang, W., Zhu, Q. (eds) Proceedings of the 11th International Conference on Modelling, Identification and Control (ICMIC2019). Lecture Notes in Electrical Engineering, vol 582. Springer, Singapore. https://doi.org/10.1007/978-981-15-0474-7_39

Download citation

Publish with us

Policies and ethics