Skip to main content

Quasi-isometry and Rigidity

  • Conference paper
  • First Online:
Mathematical Analysis and Applications in Modeling (ICMAAM 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 302))

  • 611 Accesses

Abstract

This is a brief exposition on the quasi-isometric rigidity of irreducible lattices in Lie groups. The basic notions in coarse geometry are recalled and illustrated. It is beyond the scope of these notes to go into the proofs of most of the results stated here. We shall be content with pointing the reader to standard references for detailed proofs. These notes are based on my talk in the International Conference on Mathematics and its Analysis and Applications in Mathematical Modelling held at Jadavpur University, Kolkata, in December 2017.

The author was partially supported by a XII Plan Project, Department of Atomic Energy, Government of India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bridson, M.R., Haefliger, A.: Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften, vol. 319. Springer, Berlin (1999)

    Google Scholar 

  2. Bridson, M.R., Gersten, S.M.: The optimal isoperimetric inequality for torus bundles over the circle. Quart. J. Math. Oxford Ser. 47(2)(185), 1–23 (1996)

    Article  MathSciNet  Google Scholar 

  3. Eskin, A.: Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces. J. Am. Math. Soc. 11, 321–361 (1998)

    Article  MathSciNet  Google Scholar 

  4. Eskin, A., Farb, B.: Quasi-flats and rigidity in higher rank symmetric spaces. J. Am. Math. Soc. 10, 653–692 (1997)

    Article  MathSciNet  Google Scholar 

  5. Farb, B.: The quasi-isometry classification of lattices in semisimple Lie groups. Math. Res. Lett. 4, 705–717 (1997)

    Article  MathSciNet  Google Scholar 

  6. Farb, B., Schwartz, R.: The large-scale geometry of Hilbert modular groups. J. Diff. Geom. 44, 435–478 (1996)

    Article  MathSciNet  Google Scholar 

  7. Druţu, C., Kapovich, M.: Geometric group theory. with an appendix by Bogdan Nica. In: American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, RI, vol. 63 (2018)

    Google Scholar 

  8. Gromov, M.: Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. No. 53, 53–73 (1981)

    Article  MathSciNet  Google Scholar 

  9. Gromov, M., Pansu, P.: Rigidity of lattices: an introduction. In: Geometric Topology: recent Developments (Montecatini Terme, 1990), Lecture Notes in Math, vol. 1504, pp. 39–137. Springer, Berlin (1990)

    Google Scholar 

  10. Kleiner, B., Leeb, B.: Rigidity of quasi-isometries for symmetric spaces for symmetric spaces and Euclidean buildings. Inst. Hautes Études Sci. Publ. Math. 86, 115–197 (1997)

    Article  MathSciNet  Google Scholar 

  11. Koranyi, A., Reimann, H.M.: Foundations for the theory of quasiconformal mappings on the Heisenberg group. Adv. Math. 111, 1–87 (1995)

    Article  MathSciNet  Google Scholar 

  12. Mostow, G.D.: Quasiconformal mappings in n-space and rigidity of hyperbolic space forms. Publ. Inst. Hautes Études Sci. 34, 53–104 (1968)

    Article  Google Scholar 

  13. Pansu, P.: Metriques de Carnot-Caratheodory et quasiisometries des espaces symmetriques de rang un. Ann. Math. 129, 1–60 (1989)

    Article  MathSciNet  Google Scholar 

  14. Raghunathan, M.S.: Discrete subgroups of Lie groups. Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge, vol. 68, Springer, Berlin (1972)

    Chapter  Google Scholar 

  15. Sankaran, P.: On homeomorphisms and quasi-isometries of the real line. Proc. Am. Math. Soc. 134(7), 1875–1880 (2006)

    Article  MathSciNet  Google Scholar 

  16. Schwartz, R.: The quasi-isometry classification of rank one lattices. Inst. Hautes Études Sci. Publ. Math. 82(1995), 133–168 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Schwartz, R.: Quasi-isometric rigidity and diophantine approximation. Acta Math. 177, 75–112 (1996)

    Article  MathSciNet  Google Scholar 

  18. Tukia, P.: Quasiconformal extension of quasisymmetric mappings compatible with a Möbius group. Acta Math. 154, 153–193 (1985)

    Article  MathSciNet  Google Scholar 

  19. Zimmer, R.J.: Ergodic Theory and Semisimple Lie Groups. Birkhaüser, Boston (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parameswaran Sankaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sankaran, P. (2020). Quasi-isometry and Rigidity. In: Roy, P., Cao, X., Li, XZ., Das, P., Deo, S. (eds) Mathematical Analysis and Applications in Modeling. ICMAAM 2018. Springer Proceedings in Mathematics & Statistics, vol 302. Springer, Singapore. https://doi.org/10.1007/978-981-15-0422-8_9

Download citation

Publish with us

Policies and ethics