Skip to main content

Guanotrophication by Waterbirds in Freshwater Lakes: A Review on Ecosystem Perspective

  • Conference paper
  • First Online:
Mathematical Analysis and Applications in Modeling (ICMAAM 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 302))

Abstract

Freshwater lakes throughout the world are nowadays threatened by climate change and eutrophication. As a result the crisis of drinking water and disease outbreak resulting from poor water quality has become a global issue for policymakers. Waterbirds are an inherent part of freshwater lake ecosystem and the effects of waterbird on lake ecosystem remain an important area of research in the last century. Many freshwater lakes throughout the globe support a huge number of waterbird congregations. Nutrients from waterbird droppings may serve as an important source of nutrients to those freshwater lakes and sometime may lead to eutrophication (by excess nitrogen and phosphorus loading). Waterbird can modulate the nutrient dynamics of the waterbody in two ways: (i) by changing the form of nutrient in the waterbody (nutrient cycling), (ii) by bringing nutrient from another area to waterbody (external nutrient loading) and the vice versa (nutrient input). Several attempts have been taken to estimate nutrient loading by waterbirds in waterbodies and mostly relies on extrapolation from bird count. Recent approaches incorporate avian bioenergetics for nutrient loading estimation. Effects of bird faeces on water quality, the faecal nutrient content of different species, nutrient loading estimation methods, factors affecting nutrient loading by waterbirds, ways to reduce the nutrient level in the waterbody and nutrient cycling pathways of waterbird faeces in the aquatic ecosystem are reviewed in this article with a brief future perspective. The study of guanotrophication is not only important with respect to water quality maintenance but also for conservation of waterbirds and their habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leentvaar, P.: Observations in guanotrophic environments. Hydrobiologia 29, 441489 (1967). https://doi.org/10.1007/BF00189906

    Article  Google Scholar 

  2. Kerbes, R.H., Kotanen, P.M., Jefferies, R.L.: Destruction of wetland habitats by Lesser Snow Geese: a keystone species on the West Coast of Hudson Bay. J. Appl. Ecol. 27, 242258 (1990). https://doi.org/10.2307/2403582

    Article  Google Scholar 

  3. Hahn, S., Bauer, S., Klaassen, M.: Quantification of allochthonous nutrient input into freshwater bodies by herbivorous waterbirds. Freshw. Biol. 53, 181193 (2008). https://doi.org/10.1111/j.1365-2427.2007.01881.x

    Article  Google Scholar 

  4. Manny, B.A., Johnson, W.C., Wetzel, R.G.: Nutrient additions by waterfowl to lakes and reservoirs: predicting their effects on productivity and water quality. Hydrobiologia 279, 121132 (1994). https://doi.org/10.1007/978-94-011-1128-7_12

    Chapter  Google Scholar 

  5. Mathis, B.J., Kevern, N.R.: Distribution of mercury, cadmium, lead and thallium in a eutrophic lake. Hydrobiologia 46, 207222 (1975). https://doi.org/10.1007/BF00043141

    Article  Google Scholar 

  6. Alderisio, K.A., DeLuca, N.: Seasonal enumeration of fecal coliform bacteria from the feces of ring-billed gulls (Larus delawarensis) and Canada geese (Branta canadensis). Appl. Environ. Microbiol. 65, 562830 (1999)

    Article  Google Scholar 

  7. Chatterjee, A., Adhikari, S., Mukhopadhyay, S.K.: Effects of waterbird colonization on limnochemical features of a natural wetland on buxa tiger reserve, India. During Wintering Period. Wetlands 37, 177190 (2017). https://doi.org/10.1007/s13157-016-0864-2

    Article  Google Scholar 

  8. Roy, U.S., Roy Goswami, A., Aich, A., Mukhopadhyay, S.K.: Changes in densities of waterbird species in Santragachi Lake, India: Potential effects on limnochemical variables. Zool. Stud. 50, 7684 (2011)

    Google Scholar 

  9. Friend, M.: Evolving changes in diseases of Waterbirds. In: Boere, G.C., Galbraith, C.A., Stroud, D.A. (eds.) Waterbirds Around the World: A Global Overview of the Conservation, Management and Research of the Worlds Waterbird Flyways, p. 412417. The Stationery Office Limited, Edinberg, UK (2006)

    Google Scholar 

  10. Wobeser, G.A.: Diseases of Wild Waterfowl, 2nd edn. Springer, US, Boston, MA (1997)

    Chapter  Google Scholar 

  11. Krylov, A.V., Kulakov, D.V., Chalova, I.V., Tselmovich, O.L.: The effect of vital activity products of hydrophilic birds and the degree of overgrowth on zooplankton in experimental microcosms. Inl. Water Biol. 6, 114123 (2013). https://doi.org/10.1134/S1995082913020065

    Article  Google Scholar 

  12. Krylov, A.V., Kulakov, D.V., Tsvetkov, A.I., Papchenkov, V.G.: Effect of atmospheric precipitation and the abundance of semiaquatic bird colonies on zooplankton in the littoral of a small high-trophic lake. Biol. Bull. 41, 862868 (2014). https://doi.org/10.1134/S1062359014100069

    Article  Google Scholar 

  13. Polis, G.A., Anderson, W.B., Holt, R.D.: Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Ann. Rev. Ecol. Syst. 28, 289316 (1997). https://doi.org/10.1146/annurev.ecolsys.28.1.289

    Article  Google Scholar 

  14. Mallin, M.A., McIver, M.R., Wambach, E.J., Robuck, A.R.: Algal blooms, circulators, waterfowl, and eutrophic Greenfield Lake. North Carolina. Lake Reserv. Manag. 32, 168181 (2016). https://doi.org/10.1080/10402381.2016.1146374

    Article  Google Scholar 

  15. Post, D.M., Taylor, J.P., Kitchell, J.F., et al.: The role of migratory waterfowl as nutrient vectors in a managed wetland. Conserv. Biol. 12, 910920 (1998). https://doi.org/10.1111/j.1523-1739.1998.97112.x

    Article  Google Scholar 

  16. Bazely, D.R., Jefferies, R.L.: Goose Faeces: A Source of Nitrogen for Plant Growth in a Grazed Salt Marsh. J. Appl. Ecol. 22, 693703 (1985)

    Article  Google Scholar 

  17. Gwiazda, R.: Contribution of water birds to nutrient loading to the ecosystem of mesotrophic reservoir. Ekol. Pol. 44, 289297 (1996)

    Google Scholar 

  18. Kear, J.: The agricultural importance wild goose droppings. Wildfowl 14, 7277 (1962)

    Google Scholar 

  19. Liu, Y., Hefting, M.M., Verhoeven, J.T.A., Klaassen, M.: Nutrient release characteristics from droppings of grass-foraging waterfowl (Anser brachyrhynchus) roosting in aquatic habitats. Ecohydrology 7, 12161222 (2014). https://doi.org/10.1002/eco.1454

  20. Lrling, M., van Oosterhout, F.: Case study on the efficacy of a lanthanum-enriched clay (Phoslock) in controlling eutrophication in Lake Het Groene Eiland (The Netherlands). Hydrobiologia 710, 253263 (2013). https://doi.org/10.1007/s10750-012-1141-x

    Article  Google Scholar 

  21. Marion, L., Clergeau, P., Brient, L., Bertru, G.: The importance of avian-contributed nitrogen (N) and phosphorus (P) to Lake Grand-Lieu. France. Hydrobiologia 279280, 133147 (1994). https://doi.org/10.1007/BF00027848

  22. Pettigrew, C.T., Hann, B.J., Goldsborough, L.G.: Waterfowl feces as a source of nutrients to a prairie wetland: Responses of microinvertebrates to experimental additions. Hydrobiologia 362, 5566 (1997). https://doi.org/10.1023/A:1003167219199

    Article  Google Scholar 

  23. Portnoy, J.W.: Gull contributions of phosphorus and nitrogen to a Cape Cod kettle pond. Hydrobiologia 202, 6169 (1990). https://doi.org/10.1007/BF00027092

  24. Purcell, S.L.: The Significance of Waterfowl Feces as a Source of Nutrients to Algae in a Prairie Wetland. University of Manitoba, Winnipeg, Thesis Department (1999)

    Google Scholar 

  25. Rnicke, H., Doerffer, R., Siewers, H., et al.: Phosphorus input by nordic geese to the eutrophic Lake Arendsee, Germany. Fundam. Appl. Limnol./Arch. fr Hydrobiol 172, 111119 (2008). https://doi.org/10.1127/1863-9135/2008/0172-0111

    Article  Google Scholar 

  26. Signa, G., Mazzola, A., Vizzini, S.: Effects of a small seagull colony on trophic status and primary production in a Mediterranean coastal system (Marinello ponds, Italy). Estuar. Coast. Shelf. Sci. 111, 2734 (2012). https://doi.org/10.1016/J.ECSS.2012.06.008

    Article  Google Scholar 

  27. Somura, H., Masunaga, T., Mori, Y., et al.: Estimation of nutrient input by a migratory bird, the Tundra Swan (Cygnus columbianus), to winter-flooded paddy fields. Agric. Ecosyst. Environ. 199, 19 (2015). https://doi.org/10.1016/j.agee.2014.07.018

    Article  Google Scholar 

  28. Telesford-Checkley, J.M., Mora, M.A., Grant, W.E., et al.: Estimating the contribution of nitrogen and phosphorus to waterbodies by colonial nesting waterbirds. Sci. Total Environ. 574, 13351344 (2017). https://doi.org/10.1016/j.scitotenv.2016.08.043

    Article  Google Scholar 

  29. van Geest, G.J., Hessen, D.O., Spierenburg, P., et al.: Goose-mediated nutrient enrichment and planktonic grazer control in arctic freshwater ponds. Oecologia 153, 653662 (2007). https://doi.org/10.1007/s00442-007-0770-7

    Article  Google Scholar 

  30. Gunaratne, A.M., Jayakody, S., Amarasinghe, U.S.: Ornithological eutrophication as a source of allochthonous nutrient enrichment in Anavilundawa reservoir. Sri Lanka. Int. Rev. Hydrobiol. 100, 151157 (2015). https://doi.org/10.1002/iroh.201501804

    Article  Google Scholar 

  31. Hoyer, M.V., Canfield, D.E.: Bird abundance and species richness on Florida lakes: influence of trophic status, lake morphology, and aquatic macrophytes. Hydrobiologia 279, 107119 (1994). https://doi.org/10.1007/BF00027846

    Article  Google Scholar 

  32. Tobiessen, P., Wheat, E.: Long and short term effects of waterfowl on Collins Lake, an urban lake in upstate New York. Lake Reserv. Manag. 16, 340344 (2000). https://doi.org/10.1080/07438140009354241

    Article  Google Scholar 

  33. Kitchell, J.F., Schindler, D.E., Herwig, B.R., et al.: Nutrient cycling at the landscape scale: The role of diel foraging migrations by geese at the Bosque del Apache National Wildlife Refuge. New Mexico. Limnol. Oceanogr. 44, 828836 (1999). https://doi.org/10.4319/lo.1999.44.3_part_2.0828

    Article  Google Scholar 

  34. Olson, M.H., Hage, M.M., Binkley, M.D., Binder, J.R.: Impact of migratory snow geese on nitrogen and phosphorus dynamics in a freshwater reservoir. Freshw. Biol. 50, 882890 (2005). https://doi.org/10.1111/j.1365-2427.2005.01367.x

    Article  Google Scholar 

  35. Dessborn, L., Hessel, R., Elmberg, J.: Geese as vectors of nitrogen and phosphorous to freshwater systems. Inl Waters 6, 111122 (2016). https://doi.org/10.5268/IW-6.1.897

    Article  Google Scholar 

  36. Sanderson, G.C., Anderson, W.L.: Waterfowl studies at Lake Sangchris, 1973–1977. Illinois Nat. Hist. Surv. Bull. 32, 656690 (1978)

    Google Scholar 

  37. Scherer, N.M., Gibbons, H.L., Stoops, K.B., Muller, M.: Phosphorus Loading of an Urban Lake by Bird Droppings. Lake Reserv. Manag. 11, 317327 (1995). https://doi.org/10.1080/07438149509354213

    Article  Google Scholar 

  38. Brandvold, D.K., Popp, C.J., Brierley, J.A.: Waterfowl refuge effect on water quality: II. Chemical and physical parameters. Water Pollut. Control Fed. 48, 680687 (1976)

    Google Scholar 

  39. Unckless, R.L., Makarewicz, J.C.: The impact of nutrient loading from Canada Geese (Branta canadensis) on water quality, a mesocosm approach. Hydrobiologia 586, 393401 (2007). https://doi.org/10.1007/s10750-007-0712-8

    Article  Google Scholar 

  40. Copeman, P.R.V.D.R., Dillman, F.J.: Changes in the composition of guano during storage. J. Agric. Sci. 27, 178187 (1937)

    Article  Google Scholar 

  41. Dunning, J.B.: Body masses of birds of the world. In: Dunning, J.B. (ed.) CRC Handbook of Avain Body Masses, vol. 672, 2nd edn. CRC Press, Taylor and Francis Group, Boca Raton (2008)

    Google Scholar 

  42. Gould, D.J., Fletcher, M.R.: Gull droppings and their effects on water quality. Water Res. 12, 665672 (1978). https://doi.org/10.1016/0043-1354(78)90176-8

    Article  Google Scholar 

  43. Chaichana, R., Leah, R., Moss, B.: Birds as eutrophicating agents: A nutrient budget for a small lake in a protected area. Hydrobiologia 646, 111121 (2010). https://doi.org/10.1007/s10750-010-0166-2

    Article  Google Scholar 

  44. Gremillion, P.T., Malone, R.F.: Waterfowl Waste As a Source of Nutrient Enrichment in Two Urban Hypereutrophic Lakes. Lake Reserv. Manag. 2, 319322 (1986). https://doi.org/10.1080/07438148609354650

    Article  Google Scholar 

  45. Harris, H., Ladowski, J., Donald, J.: Water-Quality Problems and Management of an Urban Waterfowl Sanctuary. J. Wildl. Manag. 45, 501507 (1981)

    Article  Google Scholar 

  46. Moore, M., Zakova, P., Shaeffer, K., Burton, R.: Potential effects of Canada Geese and climate change on phosphorus inputs to suburban lakes of the Northeastern USA. Lake Reserv. Manag. 14, 5259 (1998)

    Article  Google Scholar 

  47. Hahn, S., Bauer, S., Klaassen, M.: Estimating the contribution of carnivorous waterbirds to nutrient loading in freshwater habitats. Freshw. Biol. 52, 24212433 (2007). https://doi.org/10.1111/j.1365-2427.2007.01838.x

    Article  Google Scholar 

  48. Nrnberg, G.K., LaZerte, B.D.: Trophic state decrease after lanthanum-modified bentonite (Phoslock) application to a hyper-eutrophic polymictic urban lake frequented by Canada geese (Branta canadensis). Lake. Reserv. Manag. 32, 7488 (2016). https://doi.org/10.1080/10402381.2015.1133739

    Article  Google Scholar 

  49. Gwiazda, R., Wonica, A., ozowski B, et al.: Impact of waterbirds on chemical and biological features of water and sediments of a large, shallow dam reservoir. Oceanol. Hydrobiol. Stud. 43, 418426 (2014). https://doi.org/10.2478/s13545-014-0160-9

  50. Sndergaard, M., Moss, B.: Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes. In: Jeppesen, E., Sndergaard, M., Sndergaard, M., Christoffersen, K. (eds.) The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies (Analysis and Synthesis), p. 115132. Springer, New York (1998)

    Google Scholar 

  51. Andersen, D.C., Sartoris, J.J., Thullen, J.S., Reusch, P.G.: The effects of bird use on nutrient removal in a constructed wastewater-treatment wetland. Wetlands 23, 423435 (2003). https://doi.org/10.1672/17-20

    Article  Google Scholar 

  52. Comber, S.D.W., Smith, R., Daldorph, P., et al.: Development of a chemical source apportionment decision support framework for lake catchment management. Sci. Total Environ. 622623, 96105 (2018). https://doi.org/10.1016/J.SCITOTENV.2017.11.313

    Article  Google Scholar 

  53. Kendeigh, S.C., Dolnik, V.R., Gavrilov, V.M.: Avian Energetics. In: Pinowski, J., Kendeigh, S.C. (eds.) Grainivorous Birds in Ecosystems, p. 127204. Cambridge University Press, London (1977)

    Google Scholar 

  54. Winton, R.S., River, M.: The biogeochemical implications of massive gull flocks at landfills. Water Res. 122, 440446 (2017). https://doi.org/10.1016/j.watres.2017.05.076

    Article  Google Scholar 

  55. Paloumpis, A.A., Starrett, W.C.: An Ecological Study of Benthic Organisms in Three Illinois River Flood Plain Lakes. Am. Midl. Nat. 64, 406 (1960). https://doi.org/10.2307/2422672

    Article  Google Scholar 

  56. Callaghan, C.T., Gawlik, D.E.: Efficacy of eBird data as an aid in conservation planning and monitoring. J. F. Ornithol. 86, 298304 (2015). https://doi.org/10.1111/jofo.12121

    Article  Google Scholar 

  57. Sullivan, B.L., Aycrigg, J.L., Barry, J.H., et al.: The eBird enterprise: an integrated approach to development and application of citizen science. Biol. Conserv. 169, 3140 (2014). https://doi.org/10.1016/j.biocon.2013.11.003

    Article  Google Scholar 

  58. Perry, M.C., Kuenzel, W.J., Williams, B.K., Serafin, J.A.: Influence of Nutrients on Feed Intake and Condition of Captive Canvasbacks in Winter. J. Wildl. Manag. 50, 427434 (1986). https://doi.org/10.2307/3801099

    Article  Google Scholar 

  59. Paulus, S.L.: Time-activity budgets of nonbreeding Anatidae: a review. In: Weller, M.W. (ed.) Waterfowl in Winter: Selected Papers From Symposium and Workshop Held in Galveston, p. 135152. 7–10 January 1985 [1988]. University of Minnensota Press, Texas (1988)

    Google Scholar 

  60. Bedard, J., Gauthier, G.: Comparative energy budgets of Greater Snow Geese Chen caerulescens atlantica staging in two habitats in spring. Ardea 77, 320 (1989)

    Google Scholar 

  61. Frederick, R.B., Klaas, E.E.: Resource Use and Behavior of Migrating Snow Geese. J. Wildl. Manag. 46, 601 (1982). https://doi.org/10.2307/3808550

    Article  Google Scholar 

  62. Ravelling, D.G., Crews, W.E., Klimstra, W.E.: Activity Patterns of Canada Geese during Winter. Wilson Bull. 84, 278295 (1972)

    Google Scholar 

  63. Miller, M.R.: Time budgets of northern pintails wintering in the Sacramento Valley. California. Wildfowl 36, 5364 (1985)

    Google Scholar 

  64. Paulus, S.L.: Activity Budgets of Nonbreeding Gadwalls in Louisiana. J. Wildl. Manag. 48, 371380 (1984). https://doi.org/10.2307/3801168

    Article  Google Scholar 

  65. Peimin, P., Guoxiang, W., Chunhua, H., et al.: Can We Control Lake Eutrophication by Dredging? J. Lake Sci. 12, 269279 (2000). https://doi.org/10.18307/2000.0312

    Article  Google Scholar 

  66. Murphy, S.M., Kessel, B., Vining, L.J.: Waterfowl Populations and Limnologic Characteristics of Taiga Ponds. J Wildl. Manag. 48, 11561163 (1984). https://doi.org/10.2307/3801776

    Article  Google Scholar 

  67. Nilsson, S.G., Nilsson, I.N.: Breeding Bird Community Densities and Species Richness in Lakes. Oikos 31, 214221 (1978). https://doi.org/10.2307/3543565

    Article  Google Scholar 

  68. Mitsch, W.J., Gosselink, J.G.: Wetlands. Fourth. Wiley, New Jersey (2007)

    Google Scholar 

  69. Reddy, K.R., DeLaune, R.D.: Biogeochemistry of Wetlands: Science and Applications. CRC Press, Taylor and Francis Group, Boca Raton (2008)

    Google Scholar 

  70. Wetzel, R.G.: Limnology: Lake and Reservoir Ecosystem. Academic, California (2001)

    Chapter  Google Scholar 

  71. Oliver, D., Legovi, T.: Okefenokee marshland before, during and after nutrient enrichment by a bird rookery. Ecol. Model. 43, 195223 (1988). https://doi.org/10.1016/0304-3800(88)90004-X

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the financial support provided by University Grants Commission (UGC), New Delhi, India under the scheme of UGC-NET JRF fellowship. The author is thankful to Dr. Joyita Mukherjee, Dr. Fahad Al Basir, Dr. Arnab Banerjee, Nabyendu Rakshit and Swagata Sinha for their kind suggestions. The authors are also thankful to anonymous reviewer for important suggestions for the improvement of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adhurya, S., Das, S., Ray, S. (2020). Guanotrophication by Waterbirds in Freshwater Lakes: A Review on Ecosystem Perspective. In: Roy, P., Cao, X., Li, XZ., Das, P., Deo, S. (eds) Mathematical Analysis and Applications in Modeling. ICMAAM 2018. Springer Proceedings in Mathematics & Statistics, vol 302. Springer, Singapore. https://doi.org/10.1007/978-981-15-0422-8_22

Download citation

Publish with us

Policies and ethics