Skip to main content

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

  • 448 Accesses

Abstract

Ever since the concept of the space tether was first proposed by Tsiolkovsky in 1895, it has generated a multitude of possibilities for use in space exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsiolkovsky KE (1895) Speculations between Earth and Sky. Isd-voAN-SSSR, p 35 (reprinted in 1959)

    Google Scholar 

  2. Beletsky VV, Levin EV (1993) Dynamics of space tether systems. Univelt Incorporated

    Google Scholar 

  3. Pearson J (2005) Konstantin Tsiolkovski and the origin of the space elevator. AAS Hist Ser 26:17–24

    Google Scholar 

  4. Janeski JA (2013) Dynamics of an electrodynamic tether system in a varying space-plasma environment. PhD thesis, Virginia Polytechnic Institute and State University

    Google Scholar 

  5. Cartmell MP, McKenzie DJ (2008) A review of space tether research. Prog Aerosp Sci 44(1):1–21

    Article  Google Scholar 

  6. Kumar KD (2006) Review on dynamics and control of nonelectrodynamic tethered satellite systems. J Spacecr Rocket 43(4):705–720

    Article  Google Scholar 

  7. Levin EM (2007) Dynamic analysis of space tether missions. Univelt Incorporated

    Google Scholar 

  8. Grossman J (2000) Solar sailing: the next space craze? Eng Sci 63(4):18–29

    Google Scholar 

  9. Kaya N, Iwashita M, Nakasuka S et al (2005) Crawling robots on large web in rocket experiment on Furoshiki deployment. J Br Interplanet Soc 58(11–12):403–406

    Google Scholar 

  10. Tibert G (2002) Deployable tensegrity structures for space applications. Royal Institute of Technology

    Google Scholar 

  11. Nakasuka S, Kaya N. Quick release on experiment results of mesh deployment and phased array antenna by S-310-36. The Forefront of Space Science

    Google Scholar 

  12. Tibert G, Gardsback M (2006) Space webs final report. ESA/ACT, Adriana ID: 05, 2006, 4109

    Google Scholar 

  13. William M (1967) Spinning paraboloidal tension network. National Aeronautics and Space Administration

    Google Scholar 

  14. Robbins Jr WM (1967) The feasibility of an orbiting 1500-meter radiotelescope. National Aeronautics and Space Administration

    Google Scholar 

  15. Schürch HU, Hedgepath JM (1968) Large low-frequency orbiting radio telescope. National Aeronautics and Space Administration, Washington, DC. NASA contractor report, NASA CR-1201, 1968, 1

    Google Scholar 

  16. Kyser AC (1965) Uniform-stress spinning filamentary disk. AIAA J 3(7):1313–1316

    Article  Google Scholar 

  17. Schek HJ (1974) The force density method for form finding and computation of general networks. Comput Methods Appl Mech Eng 3(1):115–134

    Article  MathSciNet  Google Scholar 

  18. Gunnar T (1999) Numerical analyses of cable roof structures. Department of Structural Engineering, Royal Institute of Technology, Stockholm

    Google Scholar 

  19. Lai C, You Z, Pellegrino S (1998) Shape of deployable membrane reflectors. J Aerosp Eng 11(3):73–80

    Article  Google Scholar 

  20. Young W, Budynas RG (2002) Roark’s formulas for stress and strain. McGraw-Hill, New York

    Google Scholar 

  21. Pickett WL, Pratt WD, Larson ML et al (2002) Testing of centrifugally deployed membrane dynamics in an ambient ground environment. In: 43rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Denver, CO

    Google Scholar 

  22. Cook RD (2007) Concepts and applications of finite element analysis. Wiley

    Google Scholar 

  23. Eversman W (1968) Some equilibrium and free vibration problems associated with centrifugally stabilized disk and shell structures. National Aeronautics and Space Administration

    Google Scholar 

  24. Guest S (2006) The stiffness of prestressed frameworks: a unifying approach. Int J Solids Struct 43(3):842–854

    Article  Google Scholar 

  25. MacNeal RH (1967) Meteoroid damage to filamentary structures. National Aeronautics and Space Administration

    Google Scholar 

  26. Guest S, Pellegrino S. Inextensional wrapping of flat membranes. In: Proceedings of the first international seminar on structural morphology, pp 203–215

    Google Scholar 

  27. Scheel H (1974) Space-saving storage of flexible sheets: US Patent 3,848,821, 1974 Nov 19

    Google Scholar 

  28. McInnes CR (2013) Solar sailing: technology, dynamics and mission applications. Springer

    Google Scholar 

  29. Koshelev VA, Melnikov VM (1998) Large space structures formed by centrifugal forces. CRC Press

    Google Scholar 

  30. Denavit J (1955) A kinematic notation for lower-pair mechanisms based on matrices. J Appl Mech 22:215–221

    MathSciNet  MATH  Google Scholar 

  31. Schuerch HU (1964) Deployable centrifugally stabilized structures for atmospheric entry from space. National Aeronautics and Space Administration

    Google Scholar 

  32. Bischof B, Kerstein L, Starke J et al (2004) ROGER-robotic geostationary orbit restorer. Sci Technol Ser 109:183–193

    Google Scholar 

  33. Benvenuto R (2012) Implementation of a net device test bed for space debris active removal feasibility demonstration. MS thesis, Politecnico di Milano

    Google Scholar 

  34. Zhai G, Zhang J (2012) Space tether net system for debris capture and removal. In: 2012 4th International conference on intelligent human-machine systems and cybernetics (IHMSC). IEEE, pp 257–261

    Google Scholar 

  35. Zhai G, Zhang J, Yao Z (2013) Circular orbit target capture using space tether-net system. Math Probl Eng

    Google Scholar 

  36. Zhai G, Qiu Y, Liang B et al (2009) System dynamics and feedforward control for tether-net space robot system. Int J Adv Robot Syst 6(2):137–144

    Article  Google Scholar 

  37. Zhai G, Qiu Y, Liang B et al (2009) On-orbit capture with flexible tether–net system. Acta Astronaut 65(5):613–623

    Article  Google Scholar 

  38. Liu H, Zhang Q, Yang L et al (2014) Dynamics of tether-tugging reorbiting with net capture. Sci China Technol Sci 57(12):2407–2417

    Article  Google Scholar 

  39. Benvenuto R, Salvi S, Lavagna M (2015) Dynamics analysis and gnc design of flexible systems for space debris active removal. Acta Astronaut 110:247–265

    Article  Google Scholar 

  40. Huang P, Zhang F, Ma J et al (2015) Dynamics and configuration control of the maneuvering-net space robot system. Adv Space Res 55(4):1004–1014

    Article  Google Scholar 

  41. Huang P, Hu Z, Zhang F (2016) Dynamic modelling and coordinated controller designing for the manoeuvrable tether-net space robot system. Multibody Syst Dyn 36(2):115–141

    Article  MathSciNet  Google Scholar 

  42. Gao Z, Yang D, Min H et al (2012) Kinematics analysis and simulation on formation-based space net dragging process. In: 2012 International conference on control engineering and communication technology (ICCECT). IEEE, pp 455–460

    Google Scholar 

  43. Guo J, Gill E (2013) DelFFi: formation flying of two CubeSats for technology, education and science. Int J Space Sci Eng 1:113–127

    Article  Google Scholar 

  44. Huang P, Liu B, Zhang F (2016) Configuration maintaining control of three-body ring tethered system based on thrust compensation. Acta Astronaut 123:37–50

    Article  Google Scholar 

  45. Fedi Casas M (2015) Dynamics and control of tethered satellite formations in low-Earth orbits. PhD thesis, Universitat Politecnica de Catalunya

    Google Scholar 

  46. Williams T, Moore K (2002) Dynamics of tethered satellite formations. Adv Astronaut Sci 112:1219–1235

    Google Scholar 

  47. Sarychev VA (1967) Positions of relative equilibrium for two bodies connected by a spherical hinge in a circular orbit. Cosmic Res 5:314

    Google Scholar 

  48. Lorenzini EC (1987) A three-mass tethered system for micro-g/variable-g applications. J Guid Control Dynam 10(3):242–249

    Article  Google Scholar 

  49. Pizarro-Chong A, Misra AK. Dynamics of a multi-tethered satellite formation, In: Proceedings of the AIAA/AAS astrodynamics specialist conference and exhibit, Providence, Rhode Island, AIAA [AIAA 04-5308]

    Google Scholar 

  50. Kumar KD, Yasaka T (2004) Rotation formation flying of three satellites using tethers. J Spacecr Rocket 41(6):973–985

    Article  Google Scholar 

  51. Avanzini G, Fedi M (2013) Refined dynamical analysis of multi-tethered satellite formations. Acta Astronaut 84:36–48

    Article  Google Scholar 

  52. Cai Z, Li X, Zhou H (2015) Nonlinear dynamics of a rotating triangular tethered satellite formation near libration points. Aerosp Sci Technol 42:384–391

    Article  Google Scholar 

  53. Pizarro-Chong A, Misra AK (2008) Dynamics of multi-tethered satellite formations containing a parent body. Acta Astronaut 63(11):1188–1202

    Article  Google Scholar 

  54. Guerman AD, Smirnov GV, Paglione P et al (2008) Stationary configurations of a tetrahedral tethered satellite formation. J Guid Control Dyn 31(2):424–428

    Article  Google Scholar 

  55. Misra AK, Modi VJ (1987) A survey on the dynamics and control of tethered satellite systems. Tethers in Space 62:667–719

    Google Scholar 

  56. Liu G, Huang J, Ma G et al (2013) Nonlinear dynamics and station-keeping control of a rotating tethered satellite system in halo orbits. Chin J Aeronaut 26(5):1227–1237

    Article  Google Scholar 

  57. Zhao J, Cai Z (2008) Nonlinear dynamics and simulation of multi-tethered satellite formations in Halo orbits. Acta Astronaut 63(5):673–681

    Article  Google Scholar 

  58. Zhao J, Cai Z, Qi Z (2010) Dynamics of variable-length tethered formations near libration points. J Guid Control Dyn 33(4):1172–1183

    Article  Google Scholar 

  59. Chung SJ, Kong EM, Miller DW (2005) Dynamics and control of tethered formation flight spacecraft using the SPHERES testbed, In: Proceedings of the AIAA guidance, navigation and control conference, San Francisco, AIAA [AIAA 05-6088]

    Google Scholar 

  60. Quadrelli M (2001) Modeling and dynamics analysis of tethered formations for space interferometry. In: Proceedings of the AAS/AIAA space flight mechanics meeting, AAS [AAS 01-231]

    Google Scholar 

  61. Nakaya K, Matunaga S (2005) On attitude maneuver of spinning tethered formation flying based on virtual structure method. In: Proceedings of the AIAA guidance, navigation, and control conference and exhibit, San Francisco, AIAA [AIAA 05-6088]

    Google Scholar 

  62. Mori O, Matunaga S (2007) Formation and attitude control for rotational tethered satellite clusters. J Spacecr Rocket 44(1):211–220

    Article  Google Scholar 

  63. Menon C, Bombardelli C (2007) Self-stabilising attitude control for spinning tethered formations. Acta Astronaut 60(10):828–833

    Article  Google Scholar 

  64. Liang H, Wang J, Sun Z (2011) Robust decentralized coordinated attitude control of spacecraft formation. Acta Astronaut 69(5):280–288

    Article  Google Scholar 

  65. Cai Z, Li X, Wu Z (2014) Deployment and retrieval of a rotating triangular tethered satellite formation near libration points. Acta Astronaut 98:37–49

    Article  Google Scholar 

  66. Wang D, Huang P, Cai J et al (2014) Coordinated control of tethered space robot using mobile tether attachment point in approaching phase. Adv Space Res 54(6):1077–1091

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panfeng Huang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, P., Zhang, F. (2020). Introduction. In: Theory and Applications of Multi-Tethers in Space. Springer Tracts in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-0387-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0387-0_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0386-3

  • Online ISBN: 978-981-15-0387-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics