Skip to main content

Scheduling of Non-Colliding Random Walks

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS,volume 300)

Abstract

On the complete graph \(\mathcal{{K}}_M\) with \(M \ge 3\) vertices consider two independent discrete time random walks \(\mathbb {X}\) and \(\mathbb {Y}\), choosing their steps uniformly at random. A pair of trajectories \(\mathbb {X} = \{ X_1, X_2, \dots \}\) and \(\mathbb {Y} = \{Y_1, Y_2, \dots \}\) is called non-colliding, if by delaying their jump times one can keep both walks at distinct vertices forever. It was conjectured by P. Winkler that for large enough M the set of pairs of non-colliding trajectories \(\{\mathbb {X},\mathbb {Y} \} \) has positive measure. N. Alon translated this problem to the language of coordinate percolation, a class of dependent percolation models, which in most situations is not tractable by methods of Bernoulli percolation. In this representation Winkler’s conjecture is equivalent to the existence of an infinite open cluster for large enough M. In this paper we establish the conjecture building upon the renormalization techniques developed in [4].

Keywords

  • Dependent percolation
  • Renormalization

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-0302-3_4
  • Chapter length: 48 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-0302-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Abete, T., de Candia, A., Lairez, D., Coniglio, A.: Percolation model for enzyme gel degradation. Phys. Rev. Letters 93, 228301 (2004)

    CrossRef  Google Scholar 

  2. Omer, A., Holroyd, A., Martin, J., Winkler, P., Wilson, D.: Avoidance coupling. Electron. Commun. Probab. 18, 1–13 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Balister, P.N., Bollobás, B., Stacey, A.M.: Dependent percolation in two dimensions. Probab. Theory Related Fields 117, 495–513 (2000)

    MathSciNet  CrossRef  Google Scholar 

  4. Basu, R., Sly, A.: Lipschitz embeddings of random sequences. Prob. Th. Rel. Fields 159(3–4), 721–775 (2014)

    MathSciNet  CrossRef  Google Scholar 

  5. Brightwell, G.R., Winkler, P.: Submodular percolation. SIAM J. Discret. Math. 23(3), 1149–1178 (2009)

    MathSciNet  CrossRef  Google Scholar 

  6. Coppersmith, D., Tetali, P., Winkler, P.: Collisions among random walks on a graph. SIAM J. Discrete Math. 6, 363–374 (1993)

    MathSciNet  CrossRef  Google Scholar 

  7. Diaconis, P., Freedman, D.: On the statistics of vision: the Julesz conjecture. J. Math. Psychol. 24(2), 112–138 (1981)

    MathSciNet  CrossRef  Google Scholar 

  8. Gács, P.: The clairvoyant demon has a hard task. Comb. Probab. Comput. 9(5), 421–424 (2000)

    MathSciNet  CrossRef  Google Scholar 

  9. Gács, P.: Compatible sequences and a slow Winkler percolation. Combin. Probab. Comput. 13(6), 815–856 (2004)

    MathSciNet  CrossRef  Google Scholar 

  10. Gács, P.: Clairvoyant scheduling of random walks. Random Struct. Algorithms 39, 413–485 (2011)

    MathSciNet  CrossRef  Google Scholar 

  11. Gács, P.: Clairvoyant embedding in one dimension. Random Struct. Alg. 47, 520–560 (2015)

    MathSciNet  CrossRef  Google Scholar 

  12. Grimmett, G.: Three problems for the clairvoyant demon. Preprint arXiv:0903.4749 (2009)

  13. Grimmett, G.R., Liggett, T.M., Richthammer, T.: Percolation of arbitrary words in one dimension. Random Struct. Algorithms 37(1), 85–99 (2010)

    MathSciNet  CrossRef  Google Scholar 

  14. Kesten, H., de Lima, B., Sidoravicius, V., Vares, M.E.: On the compatibility of binary sequences. Comm. Pure Appl. Math. 67(6), 871–905 (2014)

    MathSciNet  CrossRef  Google Scholar 

  15. Moseman, E., Winkler, P.: On a form of coordinate percolation. Comb. Probab. Comput. 17, 837–845 (2008)

    MathSciNet  CrossRef  Google Scholar 

  16. Peled, R.: On rough isometries of Poisson processes on the line. Ann. Appl. Probab. 20, 462–494 (2010)

    MathSciNet  CrossRef  Google Scholar 

  17. Pete, G.: Corner percolation on \(\mathbb{Z}^2\) and the square root of 17. Ann. Probab. 36(5), 1711–1747 (2008)

    Google Scholar 

  18. Rolla, L., Werner, W.: Percolation of Brownian loops in three dimensions (in preparation)

    Google Scholar 

  19. Symanzik, K.: Euclidean quantum field theory. In: Jost, R. (ed.) Local Quantum Theory. Academic Press, Cambridge (1969)

    Google Scholar 

  20. Sznitman, A.-S.: Vacant set of random interlacement and percolation. Ann. Math. 171(3), 2039–2087 (2010)

    MathSciNet  CrossRef  Google Scholar 

  21. Winkler, P.: Dependent percolation and colliding random walks. Rand. Struct. Alg. 16(1), 58–84 (2000)

    MathSciNet  CrossRef  Google Scholar 

Download references

Acknowledgements

This work was completed when R.B. was a graduate student at the Department of Statistics at UC Berkeley and the result in this paper appeared in Chap. 3 of his Ph.D. dissertation at UC Berkeley: Lipschitz Embeddings of Random Objects and Related Topics, 2015. During the completion of this work R. B. was supported by UC Berkeley graduate fellowship, V. S. was supported by CNPq grant Bolsa de Produtividade, and A.S. was supported by NSF grant DMS–1352013. R.B. is currently supported by an ICTS-Simons Junior Faculty Fellowship and a Ramanujan Fellowship from Govt. of India and A.S. is supported by a Simons Investigator grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riddhipratim Basu .

Editor information

Editors and Affiliations

Additional information

To Chuck in celebration of his 70th birthday

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Basu, R., Sidoravicius, V., Sly, A. (2019). Scheduling of Non-Colliding Random Walks. In: Sidoravicius, V. (eds) Sojourns in Probability Theory and Statistical Physics - III. Springer Proceedings in Mathematics & Statistics, vol 300. Springer, Singapore. https://doi.org/10.1007/978-981-15-0302-3_4

Download citation