Skip to main content

Fabrication Technology of Chitosan-Based IPN: Drug Delivery Application

  • Chapter
  • First Online:
Interpenetrating Polymer Network: Biomedical Applications

Abstract

Chitosan as a biocompatible and biodegradable polymer is a good candidate for preparation of interpenetrating polymer network (IPN) hydrogel with amino and hydroxyl groups. Chitosan-based IPNs can release their active ingredient in response to environmental stimuli like pH and temperature. This chapter describes the preparation of chitosan-based IPNs according to chemical or physical interactions to make semi- or full-IPN hydrogels. Furthermore, drug delivery applications of chitosan-based IPN hydrogel are discussed based on the delivery route.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelaal M, Abdel-Razik E, Abdel-Bary E, El-Sherbiny I (2007) Chitosan-based interpolymeric pH-responsive hydrogels for in vitro drug release. J Appl Polym Sci 103(5):2864–2874

    Article  CAS  Google Scholar 

  • Agarwal A, Gupta P, Khanna A, Sharma R, Chandrawansh H, Gupta N (2010) Development and characterization of in situ gel system for nasal delivery. Pharmazie 65:188–193

    Google Scholar 

  • Agnihotri SA, Aminabhavi TM (2006) Novel interpenetrating network chitosan-poly (ethylene oxide-g-acrylamide) hydrogel microspheres for the controlled release of capecitabine. Int J Pharm 324(2):103–115

    Article  CAS  PubMed  Google Scholar 

  • Ahmed AA-K, Naik HB, Sherigara B (2009) Synthesis and characterization of chitosan-based pH-sensitive semi-interpenetrating network microspheres for controlled release of diclofenac sodium. Carbohydr Res 344(5):699–706

    Article  CAS  Google Scholar 

  • Angadi SC, Manjeshwar LS, Aminabhavi TM (2011) Stearic acid-coated chitosan-based interpenetrating polymer network microspheres: controlled release characteristics. Ind Eng Chem Res 50(8):4504–4514

    Article  CAS  Google Scholar 

  • Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33(11):1088–1118

    Article  CAS  Google Scholar 

  • Barbu E, Verestiuc L, Iancu M, Jatariu A, Lungu A, Tsibouklis J (2009) Hybrid polymeric hydrogels for ocular drug delivery: nanoparticulate systems from copolymers of acrylic acid-functionalized chitosan and N-isopropylacrylamide or 2-hydroxyethyl methacrylate. Nanotechnology 20(22):225108

    Article  PubMed  CAS  Google Scholar 

  • Berger J, Reist M, Mayer JM, Felt O, Peppas N, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57(1):19–34

    Article  CAS  PubMed  Google Scholar 

  • Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang M (2005) PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Control Release 103(3):609–624

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Zhang C, Shen W, Cheng Z, Yu LL, Ping Q (2007) Poly (N-isopropylacrylamide)–chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J Control Release 120(3):186–194

    Article  CAS  PubMed  Google Scholar 

  • Carreira A, Gonçalves F, Mendonça P, Gil M, Coelho J (2010) Temperature and pH responsive polymers based on chitosan: applications and new graft copolymerization strategies based on living radical polymerization. Carbohydr Polym 80(3):618–630

    Article  CAS  Google Scholar 

  • Chang C-H, Lin Y-H, Yeh C-L, Chen Y-C, Chiou S-F, Hsu Y-M et al (2009) Nanoparticles incorporated in pH-sensitive hydrogels as amoxicillin delivery for eradication of helicobacter pylori. Biomacromolecules 11(1):133–142

    Article  CAS  Google Scholar 

  • Che Y, Li D, Liu Y, Yue Z, Zhao J, Ma Q et al (2018) Design and fabrication of a triple-responsive chitosan-based hydrogel with excellent mechanical properties for controlled drug delivery. J Polym Res 25(8):169

    Article  CAS  Google Scholar 

  • Chen J-P, Cheng T-H (2008) Functionalized temperature-sensitive copolymer for tissue engineering of articular cartilage and meniscus. Colloids Surf A Physicochem Eng Asp 313:254–259

    Article  CAS  Google Scholar 

  • Chen S-C, Wu Y-C, Mi F-L, Lin Y-H, Yu L-C, Sung H-W (2004) A novel pH-sensitive hydrogel composed of N, O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release 96(2):285–300

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Liu M, Jin S, Chen Y (2005) Synthesis and swelling properties of pH-sensitive hydrogels based on chitosan and poly (methacrylic acid) semi-interpenetrating polymer network. J Appl Polym Sci 98(4):1720–1726

    Article  CAS  Google Scholar 

  • Chen J, Sun J, Yang L, Zhang Q, Zhu H, Wu H et al (2007) Preparation and characterization of a novel IPN hydrogel memberane of poly (N-isopropylacrylamide)/carboxymethyl chitosan (PNIPAAM/CMCS). Radiat Phys Chem 76(8–9):1425–1429

    Article  CAS  Google Scholar 

  • Chenite A, Chaput C, Wang D, Combes C, Buschmann M, Hoemann C et al (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21(21):2155–2161

    Article  CAS  PubMed  Google Scholar 

  • Chivukula P, Dušek K, Wang D, Dušková-Smrčková M, Kopečková P, Kopeček J (2006) Synthesis and characterization of novel aromatic azo bond-containing pH-sensitive and hydrolytically cleavable IPN hydrogels. Biomaterials 27(7):1140–1151

    Article  CAS  PubMed  Google Scholar 

  • Crini G, Badot P-M (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33(4):399–447

    Article  CAS  Google Scholar 

  • Cui L, Jia J, Guo Y, Liu Y, Zhu P (2014) Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin. Carbohydr Polym 99:31–38

    Article  CAS  PubMed  Google Scholar 

  • Cui L, Xiong Z, Guo Y, Liu Y, Zhao J, Zhang C et al (2015) Fabrication of interpenetrating polymer network chitosan/gelatin porous materials and study on dye adsorption properties. Carbohydr Polym 132:330–337

    Article  CAS  PubMed  Google Scholar 

  • Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J 243:572–590

    Article  CAS  Google Scholar 

  • Dragan ES, Lazar MM, Dinu MV, Doroftei F (2012a) Macroporous composite IPN hydrogels based on poly (acrylamide) and chitosan with tuned swelling and sorption of cationic dyes. Chem Eng J 204:198–209

    Article  CAS  Google Scholar 

  • Dragan ES, Perju MM, Dinu MV (2012b) Preparation and characterization of IPN composite hydrogels based on polyacrylamide and chitosan and their interaction with ionic dyes. Carbohydr Polym 88(1):270–281

    Article  CAS  Google Scholar 

  • El-Sherbiny I, Abdel-Bary E, Harding D (2006) Swelling characteristics and in vitro drug release study with pH-and thermally sensitive hydrogels based on modified chitosan. J Appl Polym Sci 102(2):977–985

    Article  CAS  Google Scholar 

  • Gandhi A, Paul A, Sen SO, Sen KK (2015) Studies on thermoresponsive polymers: phase behaviour, drug delivery and biomedical applications. Asian J Pharm Sci 10(2):99–107

    Article  Google Scholar 

  • Ganta S, Devalapally H, Shahiwala A, Amiji M (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 126(3):187–204

    Article  CAS  PubMed  Google Scholar 

  • Gaudana R, Ananthula HK, Parenky A, Mitra AK (2010) Ocular drug delivery. AAPS J 12(3):348–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerweck LE, Seetharaman K (1996) Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res 56(6):1194–1198

    CAS  PubMed  Google Scholar 

  • Ghaz-Jahanian MA, Abbaspour-Aghdam F, Anarjan N, Berenjian A, Jafarizadeh-Malmiri H (2015) Application of chitosan-based nanocarriers in tumor-targeted drug delivery. Mol Biotechnol 57(3):201–218

    Article  CAS  PubMed  Google Scholar 

  • Gisbert JP, Torrado G, Torrado S, Olivares D, Pajares JM (2006) Clinical trial evaluating amoxicillin and clarithromycin hydrogels (chitosan-polyacrylic acid polyionic complex) for H. pylori eradication. J Clin Gastroenterol 40(7):618–622

    Article  CAS  PubMed  Google Scholar 

  • Guan YL, Shao L, Yao KD (1996a) A study on correlation between water state and swelling kinetics of chitosan-based hydrogels. J Appl Polym Sci 61(13):2325–2335

    Article  CAS  Google Scholar 

  • Guan YL, Shao L, Yao KD (1996b) State of water in the pH-sensitive chitosan-polyether semi-IPN hydrogel. J Appl Polym Sci 61(2):393–400

    Article  CAS  Google Scholar 

  • Guo B-L, Gao Q-Y (2007) Preparation and properties of a pH/temperature-responsive carboxymethyl chitosan/poly (N-isopropylacrylamide) semi-IPN hydrogel for oral delivery of drugs. Carbohydr Res 342(16):2416–2422

    Article  CAS  PubMed  Google Scholar 

  • Hamman JH (2010) Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar Drugs 8(4):1305–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007

    Article  CAS  Google Scholar 

  • Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Article  Google Scholar 

  • Hosny KM (2009) Preparation and evaluation of thermosensitive liposomal hydrogel for enhanced transcorneal permeation of ofloxacin. AAPS PharmSciTech 10(4):1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagur-Grodzinski J (2010) Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym Adv Technol 21(1):27–47

    CAS  Google Scholar 

  • Jain A, Gulbake A, Shilpi S, Jain A, Hurkat P, Jain SK (2013) A new horizon in modifications of chitosan: syntheses and applications. Crit Rev Ther Drug Carrier Syst 30(2)

    Google Scholar 

  • Kawashima Y, HANDA T, KASAI A, TAKENAKA H, LIN SY (1985) The effects of thickness and hardness of the coating film on the drug release rate of theophylline granules coated with chitosan-sodium tripolyphosphate complex. Chem Pharm Bull 33(6):2469–2474

    Article  CAS  Google Scholar 

  • Khurma JR, Nand AV (2008) Temperature and pH sensitive hydrogels composed of chitosan and poly (ethylene glycol). Polym Bull 59(6):805–812

    Article  CAS  Google Scholar 

  • Kim SJ, Shin SR, Spinks GM, Kim IY, Kim SI (2005) Synthesis and characteristics of a semi-interpenetrating polymer network based on chitosan/polyaniline under different pH conditions. J Appl Polym Sci 96(3):867–873

    Article  CAS  Google Scholar 

  • Knaul JZ, Hudson SM, Creber KA (1999) Crosslinking of chitosan fibers with dialdehydes: proposal of a new reaction mechanism. J Polym Sci B Polym Phys 37(11):1079–1094

    Article  CAS  Google Scholar 

  • Lai W-F, Shum HC (2015) Hypromellose-graft-chitosan and its polyelectrolyte complex as novel systems for sustained drug delivery. ACS Appl Mater Interfaces 7(19):10501–10510

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Kim SY, Kim SS, Lee YM, Lee KH, Kim SJ (1999) Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly (acrylic acid). J Appl Polym Sci 73(1):113–120

    Article  CAS  Google Scholar 

  • Lee SJ, Kim SS, Lee YM (2000) Interpenetrating polymer network hydrogels based on poly (ethylene glycol) macromer and chitosan. Carbohydr Polym 41(2):197–205

    Article  Google Scholar 

  • Mark HF (2013) Encyclopedia of polymer science and technology, concise. Wiley

    Google Scholar 

  • Mi F-L, Kuan C-Y, Shyu S-S, Lee S-T, Chang S-F (2000) The study of gelation kinetics and chain-relaxation properties of glutaraldehyde-cross-linked chitosan gel and their effects on microspheres preparation and drug release. Carbohydr Polym 41(4):389–396

    Article  CAS  Google Scholar 

  • Milosavljević NB, Milašinović NZ, Popović IG, Filipović JM, Kalagasidis Krušić MT (2011) Preparation and characterization of pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid. Polym Int 60(3):443–452

    Article  CAS  Google Scholar 

  • Muzzarelli RA (2009) Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr Polym 77(1):1–9

    Article  CAS  Google Scholar 

  • Myung D, Waters D, Wiseman M, Duhamel PE, Noolandi J, Ta CN et al (2008) Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol 19(6):647–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazar H, Fatouros D, Van Der Merwe S, Bouropoulos N, Avgouropoulos G, Tsibouklis J et al (2011) Thermosensitive hydrogels for nasal drug delivery: the formulation and characterisation of systems based on N-trimethyl chitosan chloride. Eur J Pharm Biopharm 77(2):225–232

    Article  CAS  PubMed  Google Scholar 

  • Ozerkan T, Aydemir Sezer U, Deliloglu Gurhan İ, Gulce İz S, Hasirci N (2013) Semi-IPN chitosan/polyvinylpyrrolidone microspheres and films: sustained release and property optimisation. J Microencapsul 30(8):762–770

    Article  CAS  PubMed  Google Scholar 

  • Park S, Shin H, Park S (2018) A novel pH-responsive hydrogel based on carboxymethyl cellulose/2-hydroxyethyl acrylate for transdermal delivery of naringenin. Carbohydr Polym:S0144–S8617

    Google Scholar 

  • Patel VR, Amiji MM (1996) Preparation and characterization of freeze-dried chitosan-poly (ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach. Pharm Res 13(4):588–593

    Article  CAS  PubMed  Google Scholar 

  • Peak CW, Wilker JJ, Schmidt G (2013) A review on tough and sticky hydrogels. Colloid Polym Sci 291(9):2031–2047

    Article  CAS  Google Scholar 

  • Peng HT, Martineau L, Shek PN (2008) Hydrogel-elastomer composite biomaterials: 3. Effects of gelatin molecular weight and type on the preparation and physical properties of interpenetrating polymer networks. J Mater Sci Mater Med 19(3):997–1007

    Article  CAS  PubMed  Google Scholar 

  • Peppas N, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50(1):27–46

    Article  CAS  PubMed  Google Scholar 

  • Philippova OE, Hourdet D, Audebert R, Khokhlov AR (1997) pH-responsive gels of hydrophobically modified poly (acrylic acid). Macromolecules 30(26):8278–8285

    Article  CAS  Google Scholar 

  • Povea MB, Monal WA, Cauich-Rodríguez JV, Pat AM, Rivero NB, Covas CP (2011) Interpenetrated chitosan-poly (acrylic acid-co-acrylamide) hydrogels. Synthesis, characterization and sustained protein release studies. Mater Sci Appl 2(06):509

    CAS  Google Scholar 

  • Richter A, Paschew G, Klatt S, Lienig J, Arndt K-F, Adler H-J (2008) Review on hydrogel-based pH sensors and microsensors. Sensors 8(1):561–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Risbud MV, Hardikar AA, Bhat SV, Bhonde RR (2000) pH-sensitive freeze-dried chitosan–polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. J Control Release 68(1):23–30

    Article  CAS  PubMed  Google Scholar 

  • Risbud MV, Bhonde MR, Bhonde RR (2001) Effect of chitosan-polyvinyl pyrrolidone hydrogel on proliferation and cytokine expression of endothelial cells: implications in islet immunoisolation. J Biomed Mat Res 57(2):300–305

    Article  CAS  Google Scholar 

  • Rokhade AP, Agnihotri SA, Patil SA, Mallikarjuna NN, Kulkarni PV, Aminabhavi TM (2006) Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydr Polym 65(3):243–252

    Article  CAS  Google Scholar 

  • Rokhade AP, Patil SA, Aminabhavi TM (2007) Synthesis and characterization of semi-interpenetrating polymer network microspheres of acrylamide grafted dextran and chitosan for controlled release of acyclovir. Carbohydr Polym 67(4):605–613

    Article  CAS  Google Scholar 

  • Rokhade A, Kulkarni P, Mallikarjuna N, Aminabhavi T (2009) Preparation and characterization of novel semi-interpenetrating polymer network hydrogel microspheres of chitosan and hydroxypropyl cellulose for controlled release of chlorothiazide. J Microencapsul 26(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Sampath UTM, Ching YC, Chuah CH, Singh R, Lin P-C (2017) Preparation and characterization of nanocellulose reinforced semi-interpenetrating polymer network of chitosan hydrogel. Cellulose 24(5):2215–2228

    Article  CAS  Google Scholar 

  • Sokker H, Ghaffar AA, Gad Y, Aly A (2009) Synthesis and characterization of hydrogels based on grafted chitosan for the controlled drug release. Carbohydr Polym 75(2):222–229

    Article  CAS  Google Scholar 

  • Sperling LH (1991) Interpenetrating polymer networks: an overview. Interpenetrating polymer networks:3–38

    Google Scholar 

  • Sun G, Zhang X-Z, Chu C-C (2008) Effect of the molecular weight of polyethylene glycol (PEG) on the properties of chitosan-PEG-poly (N-isopropylacrylamide) hydrogels. J Mater Sci Mater Med 19(8):2865–2872

    Article  CAS  PubMed  Google Scholar 

  • Sun P, Li P, Li YM, Wei Q, Tian LH (2011) A pH-sensitive chitosan-tripolyphosphate hydrogel beads for controlled glipizide delivery. J Biomed Mater Res B Appl Biomater 97(1):175–183

    Article  PubMed  CAS  Google Scholar 

  • Thacharodi D, Rao KP (1996) Collagen-chitosan composite membranes controlled transdermal delivery of nifedipine and propranolol hydrochloride. Int J Pharm 134(1–2):239–241

    Article  CAS  Google Scholar 

  • Viyoch J, Sudedmark T, Srema W, Suwongkrua W (2005) Development of hydrogel patch for controlled release of alpha-hydroxy acid contained in tamarind fruit pulp extract. Int J Cosmet Sci 27(2):89–99

    Article  CAS  PubMed  Google Scholar 

  • Wang JJ, Liu F (2013) Enhanced adsorption of heavy metal ions onto simultaneous interpenetrating polymer network hydrogels synthesized by UV irradiation. Polym Bull 70(4):1415–1430

    Article  CAS  Google Scholar 

  • Wang H, Li W, Lu Y, Wang Z (1998) Studies on chitosan and poly (acrylic acid) interpolymer complex. I. Preparation, structure, pH-sensitivity, and salt sensitivity of complex-forming poly (acrylic acid): chitosan semi-interpenetrating polymer network. J Appl Polym Sci 69(8):1679

    Article  CAS  Google Scholar 

  • Wang M, Qiang J, Fang Y, Hu D, Cui Y, Fu X (2000) Preparation and properties of chitosan-poly (N-isopropylacrylamide) semi-IPN hydrogels. J Polym Sci A Polym Chem 38(3):474–481

    Article  CAS  Google Scholar 

  • Wang Q, Zhang J, Wang A (2009) Preparation and characterization of a novel pH-sensitive chitosan-g-poly (acrylic acid)/attapulgite/sodium alginate composite hydrogel bead for controlled release of diclofenac sodium. Carbohydr Polym 78(4):731–737

    Article  CAS  Google Scholar 

  • Wu J, Wei W, Wang L-Y, Su Z-G, Ma G-H (2007) A thermosensitive hydrogel based on quaternized chitosan and poly (ethylene glycol) for nasal drug delivery system. Biomaterials 28(13):2220–2232

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Shen J, Banerjee P, Zhou S (2010) Chitosan-based responsive hybrid nanogels for integration of optical pH-sensing, tumor cell imaging and controlled drug delivery. Biomaterials 31(32):8371–8381

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhan C, Fan L, Wang L, Zheng H (2007) Preparation of dual crosslinked alginate–chitosan blend gel beads and in vitro controlled release in oral site-specific drug delivery system. Int J Pharm 336(2):329–337

    Article  CAS  PubMed  Google Scholar 

  • Yao KD, Peng T, Goosen M, Min JM, He YY (1993) pH-sensitivity of hydrogels based on complex forming chitosan: polyether interpenetrating polymer network. J Appl Polym Sci 48(2):343–354

    Article  Google Scholar 

  • Yao KD, Liu J, Cheng GX, Zhao RZ, Wang WH, Wei L (1998) The dynamic swelling behaviour of chitosan-based hydrogels. Polym Int 45(2):191–194

    Article  CAS  Google Scholar 

  • Yin L, Fei L, Tang C, Yin C (2007) Synthesis, characterization, mechanical properties and biocompatibility of interpenetrating polymer network–super-porous hydrogel containing sodium alginate. Polym Int 56(12):1563–1571

    Article  CAS  Google Scholar 

  • Yin L, Ding J, Fei L, He M, Cui F, Tang C et al (2008) Beneficial properties for insulin absorption using superporous hydrogel containing interpenetrating polymer network as oral delivery vehicles. Int J Pharm 350(1–2):220–229

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Chesnutt B, Utturkar G, Haggard W, Yang Y, Ong J et al (2007) The effect of cross-linking of chitosan microspheres with genipin on protein release. Carbohydr Polym 68(3):561–567

    Article  CAS  Google Scholar 

  • Zhai C, Yuan J, Gao Q (2012) Stimuli-sensitive chitosan-based systems for biopharmaceuticals. In: Chitosan-Based Systems for Biopharmaceuticals: Delivery, Targeting and Polymer Therapeutics, pp 319–332

    Chapter  Google Scholar 

  • Zhang J, Yuan K, Wang Y-P, Zhang S-T, Zhang J (2007) Preparation and PH responsive behavior of poly (vinyl alcohol)—chitosan—poly (acrylic acid) full-IPN hydrogels. J Bioact Compat Polym 22(2):207–218

    Article  CAS  Google Scholar 

  • Zhou HY, Chen XG, Kong M, Liu CS, Cha DS, Kennedy JF (2008) Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system. Carbohydr Polym 73(2):265–273

    Article  CAS  Google Scholar 

  • Zhou Y, Yang D, Gao X, Chen X, Xu Q, Lu F et al (2009) Semi-interpenetrating polymer network hydrogels based on water-soluble N-carboxylethyl chitosan and photopolymerized poly (2-hydroxyethyl methacrylate). Carbohydr Polym 75(2):293–298

    Article  CAS  Google Scholar 

  • Zoratto N, Matricardi P (2018) Semi-IPNs and IPN-based hydrogels. In: Polymeric gels. Elsevier, pp 91–124

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Farokhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rastegari, A., Mottaghitalab, F., Farokhi, M. (2020). Fabrication Technology of Chitosan-Based IPN: Drug Delivery Application. In: Jana, S., Jana, S. (eds) Interpenetrating Polymer Network: Biomedical Applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-0283-5_3

Download citation

Publish with us

Policies and ethics