Skip to main content

Interpenetrating Polymer Network in Microparticulate Systems: Drug Delivery and Biomedical Application

  • Chapter
  • First Online:
Interpenetrating Polymer Network: Biomedical Applications

Abstract

The advancement in polymer grafting has played an important role in the evolution of interpenetrating polymer network (IPN) systems. Microparticle-based interpenetrating IPN systems are important for delivering the drug at target site in a controlled manner. The improved properties of IPN microparticles such as stability, swelling ability, non-toxicity and biodegradability have gained attention in drug delivery and biomedical fields. In recent past many study reports showed that IPN-based microparticles have emerged as a drug carrier to deliver drugs at different bio-targets. Different stimuli response delivery system was also developed which can protect the drug from surrounding biological environment. The application in IPN microparticles in biomedical domain is growing. It has been successfully applied as functional tissue substitution. The notable application of IPN microparticles has been reported in the field of tissue engineering, heart valve regeneration, blood capillary regeneration and for ophthalmic implants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnihotri SA, Aminabhavi TM (2005) Development of novel interpenetrating network gellan gum-poly(vinyl alcohol) hydrogel microspheres for the controlled release of carvedilol. Drug Dev Ind Pharm 31:491–503

    Article  CAS  PubMed  Google Scholar 

  • Agnihotri SA, Aminabhavi TM (2006) Novel interpenetrating network chitosan poly(ethylene oxide-g-acrylamide) hydrogel microspheres for the controlled release of capecitabine. Int J Pharm 324:103–115

    Article  CAS  PubMed  Google Scholar 

  • Aklonis J, MacKnight WJ (1983) Introduction to polymer viscoelasticity, 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  • Allen G, Bowden MJ, Blundell DJ et al (1973) Composites formed by interstitial polymerization of vinyl monomers in polyurethane elastomers: 1. Preparation and mechanical properties of methyl methacrylate based composites. Polymer 14:597–603

    Article  CAS  Google Scholar 

  • Angadi SC, Manjeshwar LS, Aminabhavi TM (2010) Interpenetrating polymer network blend microspheres of chitosan and hydroxyethyl cellulose for controlled release of isoniazid. Int J Biol Macromol 47:171–179

    Article  CAS  PubMed  Google Scholar 

  • Babu VR, Hosamani KM, Aminabhavi TM (2008) Preparation and in-vitro release of chlorothiazide novel pH-sensitive chitosan-N, N’-dimethylacrylamide semi-interpenetrating network microspheres. Carbohydr Polym 71:208–217

    Article  CAS  Google Scholar 

  • Banerjee S, Chaurasia G, Pal DK et al (2010) Investigation on crosslinking density for development of novel interpenetrating polymer network (IPN) based formulation. J Sci Ind Res 69:777–784

    CAS  Google Scholar 

  • Banerjee S, Siddiqui L, Bhattacharya SS (2012) Interpenetrating polymer network (IPN) hydrogel microspheres for oral controlled release application. Int J Biol Macromol 50:198–206

    Article  CAS  PubMed  Google Scholar 

  • Bauer BJ, Briber RM (1994) The effect of crosslink density on phase separation in interpenetrating polymer networks. In: Klempner D, Frisch KC (eds) Advances in interpenetrating polymer networks, vol 4. Lancaster, Technomic, pp 45–76

    Google Scholar 

  • Berkland C, Kipper MJ, Narasimhan B et al (2004) Microsphere size, precipitation kinetics and drug distribution control drug release from biodegradable polyanhydride microspheres. J Control Release 94:129–141

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya SS, Mazahir F, Banerjee S et al (2013) Preparation and in-vitro evaluation of xanthan gum facilitated superabsorbent polymeric microspheres. Carbohydr Polym 98:64–72

    Article  CAS  PubMed  Google Scholar 

  • Bodmeier R, Oh KH, Pramar Y (1989) Preparation and evaluation of drug containing chitosan beads. Drug Dev Ind Pharm 15:1475–1494

    Article  CAS  Google Scholar 

  • Bohner M, Tadier S, van Garderen N et al (2013) Synthesis of spherical calcium phosphate particles for dental and orthopedic applications. Biomatter 3:e25103

    Article  PubMed  PubMed Central  Google Scholar 

  • Boppana R, Krishna MG, Nayak U et al (2015) Novel pH-sensitive IPNs of polyacrylamide-g-gum ghatti and sodium alginate for gastro-protective drug delivery. Int J Biol Macromol 75:133–143

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Chen Y, Hong X et al (2013) Porous microsphere and its applications. Int J Nanomedicine 8:1111–1120

    PubMed  PubMed Central  Google Scholar 

  • Chang Y, Liu H, Feng C et al (2017) ATDC-5 growth promoted by sustained-releasing chitosan microspheres loading TGF-β1 in artificial cartilage scaffolds. Chin J Biotechnol 33:664–671

    Google Scholar 

  • Chen CH, Chen MH (2006) Synthesis, thermal properties, and morphology of blocked polyurethane/epoxy full-interpenetrating polymer network. J Appl Polym Sci 100:323–328

    Article  CAS  Google Scholar 

  • Chen C, Zheng X (1992) Development of the new antimalarial drug pyronaridine: a review. Biomed Environ Sci 5:149–160

    CAS  PubMed  Google Scholar 

  • Chern YC, Hsieh KH, Ma CCM, Gong YG (1994) Interpenetrating polymer networks of polyurethane and epoxy. J Mater Sci 29:5435–5440

    Article  CAS  Google Scholar 

  • Choi SW, Zhang Y, Yeh YC et al (2012) Biodegradable porous beads and their potential applications in regenerative medicine. J Mater Chem 22:11442–11451

    Article  CAS  Google Scholar 

  • Christensen LH (2009) Host tissue interaction, fate, and risks of degradable and nondegradable gel fillers. Dermatol Surg 35:1612–1619

    Article  CAS  PubMed  Google Scholar 

  • Crosby JM, Hutchins MK (1985) RP/CI paper 11–3. The Society of the Plastics Industry, New York

    Google Scholar 

  • Dean K, Cook WD, Rey L et al (2001) Near- infrared and rheological investigations of epoxy – vinyl ester interpenetrating polymer networks. Macromolecules 34:6623–6630

    Article  CAS  Google Scholar 

  • Dinescu S, Galateanu B, Radu E (2015) A 3d porous gelatin-alginate- based-IPN acts as an efficient promoter of chondrogenesis from human adipose-derived stem cells. Dig Stem Cells Int. https://doi.org/10.1155/2015/252909

    Article  CAS  Google Scholar 

  • Freiberg S, Zhu XX (2004) Polymer microspheres for controlled drug release. Int J Pharm 282:1–18

    Article  CAS  PubMed  Google Scholar 

  • George J, Onodera J, Miyata T (2008) Biodegradable honeycomb collagen scaffold for dermal tissue engineering. J Biomed Mater Res A 87:1103–1011

    Article  PubMed  CAS  Google Scholar 

  • Gupta P, Fung C (1990) Targeted delivery of low dose doxorubicin hydrochloride administered via magnetic albumin microspheres in rats. J Microencapsul 7:85–94

    Article  CAS  PubMed  Google Scholar 

  • Harani H, Fellahi S, Bakar M (1999) Toughening of epoxy resin using hydroxyl-terminated polyesters. J Appl Polym Sci 71:29–38

    Article  CAS  Google Scholar 

  • Jain N, Sharma PK, Banik A et al (2011) Pharmaceutical and biomedical applications of interpenetrating polymer network. Curr Drug Ther 6:263–270

    Article  CAS  Google Scholar 

  • Jana S, Sen KK (2017) Chitosan — locust bean gum interpenetrating polymeric network nanocomposites for delivery of aceclofenac. Int J Biol Macromol 102:878–884

    Article  CAS  PubMed  Google Scholar 

  • Jana S, Saha A, Nayak AK et al (2013) Aceclofenac-loaded chitosan-tamarind seed polysaccharide interpenetrating polymeric network microparticles. Colloids Surf B Biointerfaces 105:303–309

    Article  CAS  PubMed  Google Scholar 

  • Jana S, Manna S, Nayak AK et al (2014) Carbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery. Colloids Surf B: Biointerfaces 114:36–44

    Article  CAS  PubMed  Google Scholar 

  • Jana S, Sharma R, Maiti S et al (2016) Interpenetrating hydrogels of O-carboxymethyl tamarind gum and alginate for monitoring delivery of acyclovir. Int J Biol Macromol 92:1034–1039

    Article  CAS  PubMed  Google Scholar 

  • Jin R, Teixeira LM, Dijkstra P et al (2010) Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran–hyaluronic acid conjugates for cartilage tissue engineering. Biomaterials 31(11):3103–3113

    Article  CAS  PubMed  Google Scholar 

  • Kaity S, Ghosh A (2015) Comparative bio-safety and in vivo evaluation of native or modified locust bean gum-PVA IPN microspheres. Int J Biol Macromol 72:883–893

    Article  CAS  PubMed  Google Scholar 

  • Kaity S, Isaac J, Ghosh A (2013) Interpenetrating polymer network of locust bean gum-poly (vinyl alcohol) for controlled release drug delivery. Carbohydr Polym 94:456–467

    Article  CAS  PubMed  Google Scholar 

  • Kuckling D, Hoffmann JM, Plotner D (2003) Photo cross-linkable poly(N-isopropylacrylamide) copolymers III: micro-fabricated temperature responsive hydrogels. Polymer 44:4455–4462

    Article  CAS  Google Scholar 

  • Kulkarni PV, Keshavayya J (2010) Chitosan sodium alginate biodegradable interpenetrating polymer network (IPN) beads for delivery of ofloxacin hydrochloride. Int J Pharm Pharm Sci 2:77–82

    CAS  Google Scholar 

  • Kumari K, Kundu PP (2007) Semiinterpenetrating polymer networks of chitosan and L-alanine for monitoring the release of chlorpheniramine maleate. J Appl Polym Sci 103:3751–3757

    Article  CAS  Google Scholar 

  • Laeschke K (2004) Biocompatibility of microparticles into soft tissue fillers. Semin Cutan Med Surg 23:214–217

    Article  PubMed  Google Scholar 

  • Linder C, Markus A (2005) Advances in the technology for controlled-release pesticide formulations. In: Benita S (ed) Microencapsulation methods and industrial applications, 2nd edn. CRC Press, New York, pp 55–77

    Chapter  Google Scholar 

  • Madhavi C, Babu PK, Maruthi Y et al (2017) Sodium alginate–locust bean gum IPN hydrogel beads for the controlled delivery of the nimesulide-anti-inflammatory drug. Int J Pharm Pharm Sci 9:245–252

    Article  CAS  Google Scholar 

  • Mahou R, Vlahos AE, Shulman A et al (2018) Interpenetrating alginate-collagen polymer network microspheres for modular tissue engineering. ACS Biomater Sci Eng 4:3704–3712

    Article  CAS  Google Scholar 

  • Mallikarjuna B, Rao KM, Sudhakar P (2013) Chitosan based biodegradable hydrogel microspheres for controlled release of an anti HIV drug. Indian J Adv Chem Sci 1:144–151

    Google Scholar 

  • Mathiowitz E, Jacob JS, Jong YS et al (1997) Biologically erodible microspheres as potential oral drug delivery systems. Nature 386:410–414

    Article  CAS  PubMed  Google Scholar 

  • Matricardi P, Di Meo C, Coviello T, Hennink WE, Alhaique F (2013) Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv Drug Deliv Rev 65:1172–1187

    Article  CAS  PubMed  Google Scholar 

  • Matsuo M, Kwei TK, Klempner D et al (1970) Structure-property relationships in polyacrylate-poly (urethane-urea) interpenetrating polymer networks. Polymer Eng Sci 10:327–331

    Article  CAS  Google Scholar 

  • Mohamadnia Z, Zohuriaan-Mehr MJ, Kabiri K et al (2007) pH-sensitive IPN hydrogel beads of carrageenan-alginate for controlled drug delivery. J Bioact Compat Polym 22:342–356

    Article  CAS  Google Scholar 

  • Mundargi RC, Patil SA, Kulkarni PV et al (2008) Sequential interpenetrating polymer network hydrogel microspheres of poly-(methacrylic acid) and poly(vinyl alcohol) for oral controlled drug delivery to intestine. J Microencapsul 25:228–240

    Article  CAS  PubMed  Google Scholar 

  • Mundargi RC, Shelke NB, Babu VR et al (2010) Novel thermo-responsive semi-interpenetrating network microspheres of gellan gum-poly(n-isopropylacrylamide) for controlled release of atenolol. J Appl Polym Sci 116:1832–1841

    CAS  Google Scholar 

  • Nayak AK, Pal D (2011) Development of pH-sensitive tamarind seed polysaccharide alginate composite beads for controlled diclofenac sodium delivery using response surface methodology. Int J Biol Macromol 49:784–793

    Article  CAS  PubMed  Google Scholar 

  • Nazir R (2016) Collagen–hyaluronic acid based interpenetrating polymer networks as tissue engineered heart valve. Mater Sci Tech 32:871–882

    CAS  Google Scholar 

  • Onal S, Zihnioglu F (2002) Encapsulation of insulin in chitosan-coated alginate beads: oral therapeutic peptide delivery. Artif Cells Blood Substit Immobil Biotechnol 30:229–237

    Article  PubMed  Google Scholar 

  • Parke-Houben R, Fox CH, Zheng LL et al (2015) Interpenetrating polymer network hydrogel scaffolds for artificial cornea periphery. Dig J Mater Sci: Mater Med 26:107. https://doi.org/10.1007/s10856-015-5442-2

    Article  CAS  Google Scholar 

  • Prasad SS, Rao KM, Reddy PRS (2012) Synthesis and characterisation of guar gum-g-poly (acrylamidoglycolic acid) by redox initiator. Ind J Adv Chem Sci 1:28–32

    Google Scholar 

  • Raghavendra V, Kulkarni FS, Patel HM et al (2014) In vitro and in vivo evaluation of novel interpenetrated polymer network microparticles containing repaglinide. Int J Biol Macromol 69:514–522

    Article  CAS  Google Scholar 

  • Ramakrishna P, Rao KM, Sekharnath KV et al (2013) Synthesis and characterization of interpenetrating polymer network microspheres of acryl amide grafted carboxymethyl cellulose and sodium alginate for controlled release of triprolidine hydrochloride monohydrate. J App Pharm Sci 3:101–108

    Google Scholar 

  • Rani M, Agarwal A, Negi YS et al (2011) Characterization and biodegradation studies for interpenetrating polymeric network (IPN) of chitosan-amino acid beads. J Biomater Nanobiotechnol 2:71–84

    Article  CAS  Google Scholar 

  • Rani P, Sen G, Mishra S et al (2012) Microwave assisted synthesis of polyacrylamide grafted gum ghatti and its application as flocculant. Carbohydr Polym 89:275–281

    Article  CAS  PubMed  Google Scholar 

  • Rao KSVK, Eswaramma S (2017) Synthesis of dual responsive carbohydrate polymer based IPN microbeads for controlled release of anti-HIV drug. Carbohydr Polym 156:125–134

    Article  PubMed  CAS  Google Scholar 

  • Rao KSVK, Naidu BVK, Subha MCS et al (2006) Novel chitosan-based pH-sensitive interpenetrating network microgels for the controlled release of cefadroxil. Carbohydr Polym 66:333–344

    Article  CAS  Google Scholar 

  • Reddy KM, Babu VR, Rao KSVK et al (2008) Temperature sensitive semi-ipn microspheres from sodium alginate and n-isopropylacrylamide for controlled release of 5-fluorouracil. J Appl Polym Sci 107:2820–2829

    Article  CAS  Google Scholar 

  • Reddy KM, Babu VR, Sairam M et al (2012) Development of chitosan-guar gum semi interpenetrating polymer network microspheres for controlled release of cefadroxil. Des Monomers Polym 9:491–501

    Article  Google Scholar 

  • Reddy J, Nagashubha B, Reddy M et al (2014) Novel interpenetrating polymer matrix network microparticles for intestinal drug delivery. Curr Drug Deliv 11:191–199

    Article  CAS  PubMed  Google Scholar 

  • Rokhade AP, Agnihotri SA, Patil SA et al (2006) Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydr Polym 65:243–252

    Article  CAS  Google Scholar 

  • Rokhade AP, Shelke NB, Patil SA et al (2007a) Novel hydrogel microspheres of chitosan and pluronic F-127 for controlled release of 5- fluorouracil. J Microencapsul 24:274–288

    Article  CAS  PubMed  Google Scholar 

  • Rokhade AP, Patil SA, Aminabhavi TM (2007b) Synthesis and characterization of semi-interpenetrating microspheres of acrylamide grafted dextran and chitosan for controlled release of acyclovir. Carbohydr Polym 67:605–613

    Article  CAS  Google Scholar 

  • Rokhade AP, Shelke NB, Patil SA et al (2007c) Novel interpenetrating polymer network microspheres of chitosan and methylcellulose for controlled release of theophylline. Carbohydr Polym 69:678–687

    Article  CAS  Google Scholar 

  • Sajeesh S, Sharma CP (2004) Poly methacrylic acid-alginate semi-IPN microparticles for oral delivery of insulin: a preliminary investigation. J Biomater Appl 19:35–45

    Article  CAS  PubMed  Google Scholar 

  • Sang X, Zhang M, Wen Q et al (2019) Preparation of drug-eluting microspheres based on semi-interpenetrating polymer network of modified chitosan and poly(2-acrylamide-2-methylpropanesulfonic acid). Polym Sci A 61:61–69

    Article  Google Scholar 

  • Sekhar EC, Rao KSVK, Rao KM et al (2014) Development of gelatin-lignosulfonic acid blend microspheres for controlled release of an anti-malarial drug (pyronaridine). Ind J Adv Chem Sci 3:25–32

    Google Scholar 

  • Siepmann J, Siepmann F (2006) Microparticles used as drug delivery systems. Progr Colloid Polym Sci 133:15–21

    Article  CAS  Google Scholar 

  • Siraj S, Sudhakar P, Rao US et al (2014) Interpenetrating polymer network microspheres of poly (vinyl alcohol)/methyl cellulose for controlled release studies of 6-thioguanine. Int J Pharm Pharm Sci 6:101–106

    CAS  Google Scholar 

  • Solak EK (2011) Preparation and characterization of IPN microspheres for controlled delivery of naproxen. J Biomater Nanobiotechnol 2:445–453

    Article  CAS  Google Scholar 

  • Soni SR, Kumari N, Bhunia BK (2018a) In vitro and in vivo evaluation of pirfenidone loaded acrylamide grafted pullulan-poly(vinyl alcohol) interpenetrating polymer networks. Carbohydr Polym 202:288–298

    Article  CAS  PubMed  Google Scholar 

  • Soni SR, Bhunia BK, Kumari N et al (2018b) Therapeutically effective controlled release formulation of pirfenidone from nontoxic biocompatible carboxymethylpullulan- poly(vinyl alcohol) interpenetrating polymer networks. ACS Omega 3:11993–12009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soppinath KS, Aminabhavi TM (2002) Cross-linked guar gum grafted acrylamide hydrogel microspheres for the controlled release of antihypertensive drugs. Eur J Pharm Biopharm 53:87–98

    Article  Google Scholar 

  • Sperling LH (1981) An interpenetrating polymer networks and related materials. Plenum Press, New York

    Book  Google Scholar 

  • Sperling LH (1994) Interpenetrating polymer networks: an overview. In: Klempner D, Sperling LH, Utracki LA (eds) Interpenetrating polymer networks. American Chemical Society, Washington, DC, pp 3–38

    Chapter  Google Scholar 

  • Sperling LH (2001) Introduction to physical polymer science, 3rd edn. Wiley Interscience, New York

    Google Scholar 

  • Sullad AG, Manjeshwar LS, Aminabhavi TM (2011) Novel semi-interpenetrating microspheres of dextran-grafted-acrylamide and poly(vinyl alcohol) for controlled release of abacavir sulfate. Ind Eng Chem Res 50:11778–11784

    Article  CAS  Google Scholar 

  • Sullad AG, Manjeshwar LS, Aminabhavi TM et al (2014) Microspheres of poly (vinyl alcohol) and methyl cellulose for the controlled release of losartan potassium and clopidogrel bisulphate. Am J Adv Drug Deliv 3:407–423

    Google Scholar 

  • Thomas DA, Sperling LH (1978) Recent advances in interpenetrating polymer networks. In: Paul DR, Newman S (eds) Polymer Blends, vol 2. Academic Press, New York, pp 1–18

    Google Scholar 

  • Thorne JB, Vine GJ, Snowden MJ et al (2011) Microgel applications and commercial considerations. Colloid Polym Sci 289:625–646

    Article  CAS  Google Scholar 

  • Tsaryk R, Gloria A, Russo T et al (2015) Collagen-low molecular weight hyaluronic acid semi-interpenetrating network loaded with gelatin microspheres for cell and growth factor delivery for nucleus pulposus regeneration. Acta Biomater 20:10–21

    Article  CAS  PubMed  Google Scholar 

  • Vega SL, Kwon MY, Burdick JA (2017) Recent advances in hydrogels for cartilage tissue engineering. Eur Cell Mater 33:59–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vipul DP, Abhishek KG, Krishna KP et al (2015) Development and optimization of modified release IPN macromolecules of oxcarbazepine using natural polymers. Int J Biol Macromol 73:160–169

    Article  CAS  Google Scholar 

  • Vora A, Mitchell CD, Lennard L et al (2006) Toxicity and efficacy of 6-thioguanine versus 6-mercaptopurine in childhood lymphoblastic leukaemia: a randomised trial. Lancet 368:1339–1348

    Article  CAS  PubMed  Google Scholar 

  • Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953

    Article  CAS  PubMed  Google Scholar 

  • Xia YJ, Ribeiro PF, Pack DW (2013) Controlled protein release from monodisperse biodegradable double-wall microspheres of controllable shell thickness. J Control Release 172:707–714

    Article  CAS  PubMed  Google Scholar 

  • Zada A, Avny Y, Zilkha A (2000) Monomers for non-bond crosslinking of vinyl polymers: III. Some characteristics of the system. Eur Polym J 36:359–364

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manna, S., Manna, M., Jana, S. (2020). Interpenetrating Polymer Network in Microparticulate Systems: Drug Delivery and Biomedical Application. In: Jana, S., Jana, S. (eds) Interpenetrating Polymer Network: Biomedical Applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-0283-5_1

Download citation

Publish with us

Policies and ethics