Skip to main content

Application of Chitosan in Oral Drug Delivery

  • Chapter
  • First Online:
Functional Chitosan

Abstract

Oral drug delivery is counted as the preferable route of drug administration due to its convenience, safety, and cost-effectiveness. However, many drugs are not good candidates for oral application mainly because of drug degradation within the gastrointestinal system. Overcoming the obstacles for effective oral delivery of drugs is currently one of the chief goals driving drug delivery research. Recently, remarkable advances in drug delivery technology have led to the increase in the use of various carriers for oral drug delivery. Polymers, as one of the most widely utilized tools, have demonstrated a considerable number of benefits of which stable physicochemical properties and cost-effectiveness are the prominent ones. Along with the mentioned features, an ideal polymeric delivery vehicle should be biocompatible and protect the incorporated drug from enzymatic degradation in the gastrointestinal tract. Chitosan has been extensively studied by many researchers, and a massive data is now available upon its distinctive benefits and restrictions as well as its unique characteristics appreciable for oral drug delivery. It is safe, biocompatible, low cost, and readily available. In addition, intrinsic mucoadhesion ability of chitosan urges its use as an oral drug delivery vehicle. The goal of this chapter is to focus on the application of chitosan as an oral delivery carrier for therapeutic molecules and drugs. Current conventional formulations of chitosan are first reviewed, and the related limitations are investigated to lead readers to the next sections in which novel approaches for improved delivery system are explained as fully as possible. Application of chitosan in oral gene and peptide delivery is explained as separate sections since these two areas have been attracting much attention in recent years due to the intrinsic properties of chitosan making it a promising candidate in the areas. Different strategies employed to improve chitosan polymers regarding physicochemical and targeting properties are covered throughout the script. Diverse modification approaches as well as their limitations are explained, exemplified, and illustrated within the body of the chapter. In the end, the future concept of chitosan oral drug delivery is argued followed by a concise summary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abkar M et al (2017) Oral immunization of mice with Omp31-loaded N-trimethyl chitosan nanoparticles induces high protection against Brucella melitensis infection. Int J Nanomedicine 12:8769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmadivand S et al (2017) Oral DNA vaccines based on CS-TPP nanoparticles and alginate microparticles confer high protection against infectious pancreatic necrosis virus (IPNV) infection in trout. Dev Comp Immunol 74:178–189

    CAS  PubMed  Google Scholar 

  • Ahmed M et al (2009) Formulation andIn-vitroevaluation of chitosan films containing tetracycline for the treatment of periodontitis. Asian J Pharm 3(2):113

    Google Scholar 

  • Anal AK, Stevens WF (2005) Chitosan–alginate multilayer beads for controlled release of ampicillin. Int J Pharm 290(1–2):45–54

    CAS  PubMed  Google Scholar 

  • Andreas B, Hornof M, Zoidl T (2003) Thiolated polymers–thiomers: modification of chitosan with 2-iminothiolane. Int J Pharm 260:229–237

    Google Scholar 

  • Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17:1647–1657

    CAS  PubMed  Google Scholar 

  • Arif M et al (2018) Development of novel pH-sensitive thiolated chitosan/PMLA nanoparticles for amoxicillin delivery to treat helicobacter pylori. Mater Sci Eng C 83:17–24

    CAS  Google Scholar 

  • Bacon A et al (2000) Carbohydrate biopolymers enhance antibody responses to mucosally delivered vaccine antigens. Infect Immun 68(10):5764–5770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bayat A et al (2008) Nanoparticles of quaternized chitosan derivatives as a carrier for colon delivery of insulin: ex vivo and in vivo studies. Int J Pharm 356(1–2):259–266

    CAS  PubMed  Google Scholar 

  • Berger J et al (2004a) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57(1):19–34

    CAS  PubMed  Google Scholar 

  • Berger J et al (2004b) Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm 57(1):35–52

    CAS  PubMed  Google Scholar 

  • Bernkop-Schnürch A (2005) Thiomers: a new generation of mucoadhesive polymers. Adv Drug Deliv Rev 57(11):1569–1582

    PubMed  Google Scholar 

  • Bernkop-Schnürch A, Brandt U, Clausen A (1999) Synthesis and in vitro evaluation of chitosan-cysteine conjugates. Sci Pharm 67:196–208

    Google Scholar 

  • Bernkop-Schnürch A, Hornof M, Zoidl T (2003) Thiolated polymers—thiomers: synthesis and in vitro evaluation of chitosan–2-iminothiolane conjugates. Int J Pharm 260(2):229–237

    PubMed  Google Scholar 

  • Bernkop-Schnürch A, Hornof M, Guggi D (2004) Thiolated chitosans. Eur J Pharm Biopharm 57(1):9–17

    PubMed  Google Scholar 

  • Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62(1):83–99

    CAS  PubMed  Google Scholar 

  • Biswas S et al (2014) Structure-toxicity relationship of chemically modified chitosan as an Oral protein drug delivery carrier. J Pharm Sci Pharmacol 1(2):131–140

    Google Scholar 

  • Biswas S et al (2015) Development and characterization of alginate coated low molecular weight chitosan nanoparticles as new carriers for oral vaccine delivery in mice. Carbohydr Polym 121:403–410

    CAS  PubMed  Google Scholar 

  • Chandy T, Sharma CP (1992) Chitosan beads and granules for oral sustained delivery of nifedipine: in vitro studies. Biomaterials 13(13):949–952

    CAS  PubMed  Google Scholar 

  • Chaudhury A, Das S (2011) Recent advancement of chitosan-based nanoparticles for oral controlled delivery of insulin and other therapeutic agents. AAPS PharmSciTech 12(1):10–20

    CAS  PubMed  Google Scholar 

  • Chellat F et al (2005) Metalloproteinase and cytokine production by THP-1 macrophages following exposure to chitosan-DNA nanoparticles. Biomaterials 26(9):961–970

    CAS  PubMed  Google Scholar 

  • Chen T et al (2003) Enzyme-catalyzed gel formation of gelatin and chitosan: potential for in situ applications. Biomaterials 24(17):2831–2841

    CAS  PubMed  Google Scholar 

  • Cho BC et al (2005) The effect of chitosan bead encapsulating calcium sulfate as an injectable bone substitute on consolidation in the mandibular distraction osteogenesis of a dog model. J Oral Maxillofac Surg 63(12):1753–1764

    PubMed  Google Scholar 

  • Chu C-H et al (1996) Development of a model for analyzing the swelling rate of ionic gels on the basis of the diffusion of mobile ions: application to the pH-sensitive swelling of a polyelectrolyte complex gel prepared from xanthan and chitosan. Biosci Biotechnol Biochem 60(10):1627–1632

    CAS  Google Scholar 

  • Clark MA, Jepson MA, Hirst BH (2001) Exploiting M cells for drug and vaccine delivery. Adv Drug Deliv Rev 50(1–2):81–106

    CAS  PubMed  Google Scholar 

  • Cui F et al (2009) Preparation, characterization, and oral delivery of insulin loaded carboxylated chitosan grafted poly (methyl methacrylate) nanoparticles. Biomacromolecules 10(5):1253–1258

    CAS  PubMed  Google Scholar 

  • Danesh-Bahreini MA et al (2011) Nanovaccine for leishmaniasis: preparation of chitosan nanoparticles containing Leishmania superoxide dismutase and evaluation of its immunogenicity in BALB/c mice. Int J Nanomedicine 6:835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Denkbas EB, Ottenbrite RM (2006) Perspectives on: chitosan drug delivery systems based on their geometries. J Bioact Compat Polym 21:351–368

    CAS  Google Scholar 

  • Desai MP et al (1996) Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 13(12):1838–1845

    CAS  PubMed  Google Scholar 

  • Desai MP et al (1997) The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 14(11):1568–1573

    CAS  PubMed  Google Scholar 

  • Eldridge JH et al (1990) Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the Peyer’s patches. J Control Release 11(1–3):205–214

    CAS  Google Scholar 

  • Fan B et al (2016) pH-responsive thiolated chitosan nanoparticles for oral low-molecular weight heparin delivery: in vitro and in vivo evaluation. Drug Deliv 23(1):238–247

    CAS  PubMed  Google Scholar 

  • Fetih G et al (2005) Improvement of absorption enhancing effects of n-dodecyl-β-D-maltopyranoside by its colon-specific delivery using chitosan capsules. Int J Pharm 293(1–2):127–135

    CAS  PubMed  Google Scholar 

  • Gades MD, Stern JS (2005) Chitosan supplementation and fat absorption in men and women. J Am Diet Assoc 105(1):72–77

    CAS  PubMed  Google Scholar 

  • Gao P et al (2016) Chitosan based nanoparticles as protein carriers for efficient oral antigen delivery. Int J Biol Macromol 91:716–723

    CAS  PubMed  Google Scholar 

  • Gavhane YN, Yadav AV (2013) Improvement in physicochemical properties of Aceclofenac by using chitosan and water soluble chitosan. Int J Pharm Pharm Sci 5(1):414–419

    Google Scholar 

  • George M, Abraham TE (2006a) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release 114(1):1–14

    CAS  PubMed  Google Scholar 

  • George M, Abraham TE (2006b) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan--a review. J Control Release 114(1):1–14

    CAS  PubMed  Google Scholar 

  • Ghaffari A et al (2007) Preparation and characterization of free mixed-film of pectin/chitosan/Eudragit® RS intended for sigmoidal drug delivery. Eur J Pharm Biopharm 67(1):175–186

    CAS  PubMed  Google Scholar 

  • Gupta K, Kumar MR (2000) Drug release behavior of beads and microgranules of chitosan. Biomaterials 21(11):1115–1119

    CAS  PubMed  Google Scholar 

  • Hadisoewignyo L et al (2018) Evaluation of anti-inflammatory activity and biocompatibility of curcumin loaded mesoporous silica nanoparticles as an oral drug delivery system. Adv Nat Sci Nanosci Nanotechnol 9(3):035007

    Google Scholar 

  • Hari P, Chandy T, Sharma CP (1996a) Chitosan/calcium–alginate beads for oral delivery of insulin. J Appl Polym Sci 59(11):1795–1801

    CAS  Google Scholar 

  • Hari P, Chandy T, Sharma CP (1996b) Chitosan/calcium alginate microcapsules for intestinal delivery of nitrofurantoin. J Microencapsul 13(3):319–329

    CAS  PubMed  Google Scholar 

  • He C et al (2015) Optimization of multifunctional chitosan–siRNA nanoparticles for oral delivery applications, targeting TNF-α silencing in rats. Acta Biomater 17:98–106

    CAS  PubMed  Google Scholar 

  • Hejazi R, Amiji M (2003) Chitosan-based gastrointestinal delivery systems. J Control Release 89(2):151–165

    CAS  PubMed  Google Scholar 

  • Helmy AM et al (2017) Development and in vivo evaluation of chitosan beads for the colonic delivery of azathioprine for treatment of inflammatory bowel disease. Eur J Pharm Sci 109:269–279

    CAS  PubMed  Google Scholar 

  • HOU W et al (1985) Sustained release of indomethacin from chitosan granules. Chem Pharm Bull 33(9):3986–3992

    CAS  PubMed  Google Scholar 

  • Huang J et al (2015) Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials 39:105–113

    CAS  PubMed  Google Scholar 

  • Huang T et al (2018) Chitosan-DNA nanoparticles enhanced the immunogenicity of multivalent DNA vaccination on mice against Trueperella pyogenes infection. J Nanobiotechnol 16(1):8

    Google Scholar 

  • Jin R et al (2007) Enzyme-mediated fast in situ formation of hydrogels from dextran–tyramine conjugates. Biomaterials 28(18):2791–2800

    CAS  PubMed  Google Scholar 

  • Kafedjiiski K et al (2005a) Synthesis and in vitro evaluation of a novel chitosan–glutathione conjugate. Pharm Res 22(9):1480–1488

    CAS  PubMed  Google Scholar 

  • Kafedjiiski K et al (2005b) Synthesis and in vitro evaluation of a novel thiolated chitosan. Biomaterials 26(7):819–826

    CAS  PubMed  Google Scholar 

  • Kast CE, Bernkop-Schnürch A (2001) Thiolated polymers—thiomers: development and in vitro evaluation of chitosan–thioglycolic acid conjugates. Biomaterials 22(17):2345–2352

    CAS  PubMed  Google Scholar 

  • Kawashima Y et al (1985) Preparation of a prolonged release tablet of aspirin with chitosan. Chem Pharm Bull 33(5):2107–2113

    CAS  PubMed  Google Scholar 

  • Khan TA, Peh KK, Ch’ng HS (2002) Reporting degree of deacetylation values of chitosan: the influence of analytical methods. J Pharm Pharmaceut Sci 5(3):205–212

    CAS  Google Scholar 

  • Khan F, Tares RS, Oreffo ROC, Bradley M (2009) Versatile biocompatible polymer hydrogels: scaffolds for cell growth. Angew Chem Int Ed 48:978–982

    CAS  Google Scholar 

  • Kim MS et al (2007) Synthesis and characterization of in situ chitosan-based hydrogel via grafting of carboxyethyl acrylate. J Biomed Mater Res A 83(3):674–682

    PubMed  Google Scholar 

  • Kohane DS, Langer R (2008) Polymeric biomaterials in tissue engineering. Pediatr Res 3:487–491

    Google Scholar 

  • Kulkarni N, Wakte P, Naik J (2015) Development of floating chitosan-xanthan beads for oral controlled release of glipizide. Int J Pharm Investig 5(2):73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar MR et al (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104(12):6017–6084

    PubMed  Google Scholar 

  • Kumar B, Mahaboobi S, Satyam S (2017) Chitosan in medicine–a mini review. J Mol Pharm Org Process Res 5(134):2

    Google Scholar 

  • Lau JL, Dunn MK (2018) Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem 26(10):2700–2707

    CAS  PubMed  Google Scholar 

  • Lin C-C, Lin C-W (2009) Preparation of N, O-carboxymethyl chitosan nanoparticles as an insulin carrier. Drug Deliv 16(8):458–464

    CAS  PubMed  Google Scholar 

  • Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58:1379–1408

    CAS  PubMed  Google Scholar 

  • Lin YH et al (2005) Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterials 26(14):2105–2113

    CAS  PubMed  Google Scholar 

  • Liu Y et al (2016) Nano-polyplex based on oleoyl-carboxymethy-chitosan (OCMCS) and hyaluronic acid for oral gene vaccine delivery. Colloids Surf B: Biointerfaces 145:492–501

    CAS  PubMed  Google Scholar 

  • Mandracchia D et al (2017) In vitro evaluation of glycol chitosan based formulations as oral delivery systems for efflux pump inhibition. Carbohydr Polym 166:73–82

    CAS  PubMed  Google Scholar 

  • Mansourpour M et al (2015) Development of acid-resistant alginate/trimethyl chitosan nanoparticles containing cationic β-cyclodextrin polymers for insulin oral delivery. AAPS PharmSciTech 16(4):952–962

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martien R et al (2007) Chitosan-thioglycolic acid conjugate: an alternative carrier for oral nonviral gene delivery? J Biomed Mater Res A 82(1):1–9

    PubMed  Google Scholar 

  • Mi FL et al (1997) Chitosan tablets for controlled release of theophylline: effect of polymer—drug wet or dry blending and anionic—cationic interpolymer complex. J Appl Polym Sci 66(13):2495–2505

    CAS  Google Scholar 

  • Millotti G et al (2014) In vivo evaluation of thiolated chitosan tablets for oral insulin delivery. J Pharm Sci 103(10):3165–3170

    CAS  PubMed  Google Scholar 

  • MIYAZAKI S et al (1988a) Sustained-release and intragastric-floating granules of indomethacin using chitosan in rabbits. Chem Pharm Bull 36(10):4033–4038

    CAS  PubMed  Google Scholar 

  • MIYAZAKI S et al (1988b) Sustained release of indomethacin from chitosan granules in beagle dogs. J Pharm Pharmacol 40(9):642–643

    CAS  PubMed  Google Scholar 

  • Mokhtare B et al (2017) In vitro and in vivo evaluation of alginate and alginatechitosan beads containing metformin hydrochloride. Trop J Pharm Res 16(2):287–296

    CAS  Google Scholar 

  • Montero-Padilla S, Velaga S, Morales JO (2017) Buccal dosage forms: general considerations for pediatric patients. AAPS PharmSciTech 18(2):273–282

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay P et al (2013) Formulation of pH-responsive carboxymethyl chitosan and alginate beads for the oral delivery of insulin. J Appl Polym Sci 129(2):835–845

    CAS  Google Scholar 

  • Mutalik S et al (2008) Enhancement of dissolution rate and bioavailability of aceclofenac: a chitosan-based solvent change approach. Int J Pharm 350(1–2):279–290

    CAS  PubMed  Google Scholar 

  • Narayanan D et al (2013) In vitro and in vivo evaluation of osteoporosis therapeutic peptide PTH 1–34 loaded PEGylated chitosan nanoparticles. Mol Pharm 10(11):4159–4167

    CAS  PubMed  Google Scholar 

  • Ono K et al (2000) Photocrosslinkable chitosan as a biological adhesive. J Biomed Mater Res 49(2):289–295

    CAS  PubMed  Google Scholar 

  • Park S-H, Chun M-K, Choi H-K (2008) Preparation of an extended-release matrix tablet using chitosan/Carbopol interpolymer complex. Int J Pharm 347(1–2):39–44

    CAS  PubMed  Google Scholar 

  • Park H, Park K, Shalaby WS (2011) Biodegradable hydrogels for drug delivery. CRC Press, Lancaster

    Google Scholar 

  • Pasparakis G, Bouropoulos N (2006) Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads. Int J Pharm 323(1–2):34–42

    CAS  PubMed  Google Scholar 

  • Patel A (2016) Mucoadhesive Buccal films based on chitosan and Carboxymethylated Feronia Limonia fruit pulp mucilage Interpolymer complex for delivery of opioid analgesics. Asian J Pharm 10(2):137

    CAS  Google Scholar 

  • Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    CAS  PubMed  Google Scholar 

  • Perugini P et al (2003) Periodontal delivery of ipriflavone: new chitosan/PLGA film delivery system for a lipophilic drug. Int J Pharm 252(1–2):1–9

    CAS  PubMed  Google Scholar 

  • Quade-Lyssy P et al (2014) Oral gene therapy for hemophilia B using chitosan-formulated FIX mutants. J Thromb Haemost 12(6):932–942

    CAS  PubMed  Google Scholar 

  • Rao NR et al (2010) Preparation and characterization of ionotropic cross-linked chitosan microparticles for controlled release of aceclofenac. Int J Pharm Sci Drug Res 2(2):107–111

    CAS  Google Scholar 

  • Remunan-Lopez C et al (1998) Design and evaluation of chitosan/ethylcellulose mucoadhesive bilayered devices for buccal drug delivery. J Control Release 55(2–3):143–152

    CAS  PubMed  Google Scholar 

  • Renu S et al (2018) Engineering of targeted Mucoadhesive chitosan based Salmonella Nanovaccine for oral delivery in poultry. Am Assoc Immnol 200:118.15

    Google Scholar 

  • Richard J (2017) Challenges in oral peptide delivery: lessons learnt from the clinic and future prospects. Ther Deliv 8(8):663–684

    CAS  PubMed  Google Scholar 

  • Roy K et al (1999) Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 5(4):387

    CAS  PubMed  Google Scholar 

  • Roy I, Sardar M, Gupta MN (2003) Hydrolysis of chitin by Pectinex™. Enzym Microb Technol 32(5):582–588

    CAS  Google Scholar 

  • Sabnis S, Rege P, Block LH (1997) Use of chitosan in compressed tablets of diclofenac sodium: inhibition of drug release in an acidic environment. Pharm Dev Technol 2(3):243–255

    CAS  PubMed  Google Scholar 

  • Sadeghi A et al (2008a) Permeation enhancer effect of chitosan and chitosan derivatives: comparison of formulations as soluble polymers and nanoparticulate systems on insulin absorption in Caco-2 cells. Eur J Pharm Biopharm 70(1):270–278

    CAS  PubMed  Google Scholar 

  • Sadeghi A et al (2008b) Preparation, characterization and antibacterial activities of chitosan, N-trimethyl chitosan (TMC) and N-diethylmethyl chitosan (DEMC) nanoparticles loaded with insulin using both the ionotropic gelation and polyelectrolyte complexation methods. Int J Pharm 355(1–2):299–306

    CAS  PubMed  Google Scholar 

  • Şenel S et al (2000) Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery. Int J Pharm 193(2):197–203

    PubMed  Google Scholar 

  • Shalaby TI, El-Refaie WM (2018) Bioadhesive chitosan-coated cationic nanoliposomes with improved insulin encapsulation and prolonged oral hypoglycemic effect in diabetic mice. J Pharm Sci 107:2136

    CAS  PubMed  Google Scholar 

  • Shimono N et al (2002) Chitosan dispersed system for colon-specific drug delivery. Int J Pharm 245(1–2):45–54

    CAS  PubMed  Google Scholar 

  • Shu X, Zhu K (2002) Controlled drug release properties of ionically cross-linked chitosan beads: the influence of anion structure. Int J Pharm 233(1–2):217–225

    CAS  PubMed  Google Scholar 

  • Sinha V, Kumria R (2002) Binders for colon specific drug delivery: an in vitro evaluation. Int J Pharm 249(1–2):23–31

    CAS  PubMed  Google Scholar 

  • Sithole MN et al (2017) A review of semi-synthetic biopolymer complexes: modified polysaccharide nano-carriers for enhancement of oral drug bioavailability. Pharm Dev Technol 22(2):283–295

    CAS  PubMed  Google Scholar 

  • Soares E, Jesus S, Borges O (2018) Oral hepatitis B vaccine: chitosan or glucan based delivery systems for efficient HBsAg immunization following subcutaneous priming. Int J Pharm 535(1–2):261–271

    CAS  PubMed  Google Scholar 

  • Sogias IA, Williams AC, Khutoryanskiy VV (2012) Chitosan-based mucoadhesive tablets for oral delivery of ibuprofen. Int J Pharm 436(1–2):602–610

    CAS  PubMed  Google Scholar 

  • Spinks CB et al (2017) Pharmaceutical characterization of novel tenofovir liposomal formulations for enhanced oral drug delivery: in vitro pharmaceutics and Caco-2 permeability investigations. Clin Pharmacol Adv Appl 9:29

    CAS  Google Scholar 

  • Sutton SC, Nause R, Gandelman K (2017) The impact of gastric pH, volume, and emptying on the food effect of ziprasidone oral absorption. AAPS J 19(4):1084–1090

    CAS  PubMed  Google Scholar 

  • Takka S, Gürel A (2010) Evaluation of chitosan/alginate beads using experimental design: formulation and in vitro characterization. AAPS PharmSciTech 11(1):460–466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan H, Wu YC, Payne KA, Marra KG (2004) A novel pH-sensitivehydrogel composed of N, O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release 96:285–300

    Google Scholar 

  • Tan H et al (2009) Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30(13):2499–2506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang C et al (2014) Preparation of ibuprofen-loaded chitosan films for oral mucosal drug delivery using supercritical solution impregnation. Int J Pharm 473(1–2):434–441

    CAS  PubMed  Google Scholar 

  • Tapia C et al (2004) Comparative studies on polyelectrolyte complexes and mixtures of chitosan–alginate and chitosan–carrageenan as prolonged diltiazem clorhydrate release systems. Eur J Pharm Biopharm 57(1):65–75

    CAS  PubMed  Google Scholar 

  • Teruel AH et al (2018) Smart gated magnetic silica mesoporous particles for targeted colon drug delivery: new approaches for inflammatory bowel diseases treatment. J Control Release 281:58–69

    CAS  PubMed  Google Scholar 

  • Thanou M et al (2000) Effect of degree of quaternization of N-trimethyl chitosan chloride for enhanced transport of hydrophilic compounds across intestinal Caco-2 cell monolayers. J Control Release 64(1–3):15–25

    CAS  PubMed  Google Scholar 

  • Tobio M et al (1998) Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharm Res 15(2):270–275

    CAS  PubMed  Google Scholar 

  • Tobıo M et al (2000) The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids Surf B: Biointerfaces 18(3–4):315–323

    PubMed  Google Scholar 

  • Tozaki H et al (1997) Chitosan capsules for colon-specific drug delivery: improvement of insulin absorption from the rat colon. J Pharm Sci 86(9):1016–1021

    CAS  PubMed  Google Scholar 

  • TOZAKI H et al (1999) Validation of a pharmacokinetic model of Colon-specific drug delivery and the therapeutic effects of chitosan capsules containing 5-Aminosalicylic acid on 2, 4, 6-Trinitrobenzenesulphonic acid-induced colitis in rats. J Pharm Pharmacol 51(10):1107–1112

    CAS  PubMed  Google Scholar 

  • Tozaki H et al (2002) Chitosan capsules for colon-specific drug delivery: enhanced localization of 5-aminosalicylic acid in the large intestine accelerates healing of TNBS-induced colitis in rats. J Control Release 82(1):51–61

    CAS  PubMed  Google Scholar 

  • Valero Y et al (2016) An oral chitosan DNA vaccine against nodavirus improves transcription of cell-mediated cytotoxicity and interferon genes in the European sea bass juveniles gut and survival upon infection. Dev Comp Immunol 65:64–72

    CAS  PubMed  Google Scholar 

  • Varshosaz J et al (2015) Polyelectrolyte complexes of chitosan for production of sustained release tablets of bupropion HCL. Farmacia 63(1):65–73

    CAS  Google Scholar 

  • Wang K, He Z (2002) Alginate–konjac glucomannan–chitosan beads as controlled release matrix. Int J Pharm 244(1–2):117–126

    CAS  PubMed  Google Scholar 

  • Wang E et al (2018) Preparation, characterization and evaluation of the immune effect of alginate/chitosan composite microspheres encapsulating recombinant protein of Streptococcus iniae designed for fish oral vaccination. Fish Shellfish Immunol 73:262–271

    CAS  PubMed  Google Scholar 

  • Wedmore I et al (2006) A special report on the chitosan-based hemostatic dressing: experience in current combat operations. J Trauma Acute Care Surg 60(3):655–658

    Google Scholar 

  • Werle M, Bernkop-Schnürch A (2008) Thiolated chitosans: useful excipients for oral drug delivery. J Pharm Pharmacol 60(3):273–281

    CAS  PubMed  Google Scholar 

  • Werle M, Hoffer M (2006) Glutathione and thiolated chitosan inhibit multidrug resistance P-glycoprotein activity in excised small intestine. J Control Release 111(1–2):41–46

    CAS  PubMed  Google Scholar 

  • Werle M, Takeuchi H, Bernkop-Schnürch A (2009) Modified chitosans for oral drug delivery. J Pharm Sci 98(5):1643–1656

    CAS  PubMed  Google Scholar 

  • Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118

    Google Scholar 

  • Xu Y et al (2007) Preparation of dual crosslinked alginate–chitosan blend gel beads and in vitro controlled release in oral site-specific drug delivery system. Int J Pharm 336(2):329–337

    CAS  PubMed  Google Scholar 

  • Yao KD et al (1994) Swelling kinetics and release characteristic of crosslinked chitosan: polyether polymer network (semi-IPN) hydrogels. J Polym Sci A Polym Chem 32(7):1213–1223

    CAS  Google Scholar 

  • Zeng N et al (2017) Cyanine derivative as a suitable marker for thermosensitive in situ gelling delivery systems: in vitro and in vivo validation of a sustained buccal drug delivery. Int J Pharm 534(1–2):128–135

    CAS  PubMed  Google Scholar 

  • Zhang M et al (2002a) Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials 23(13):2641–2648

    CAS  PubMed  Google Scholar 

  • Zhang H, Alsarra IA, Neau SH (2002b) An in vitro evaluation of a chitosan-containing multiparticulate system for macromolecule delivery to the colon. Int J Pharm 239(1–2):197–205

    CAS  PubMed  Google Scholar 

  • Zhao K et al (2014) Chitosan-coated poly (lactic-co-glycolic) acid nanoparticles as an efficient delivery system for Newcastle disease virus DNA vaccine. Int J Nanomedicine 9:4609

    PubMed  PubMed Central  Google Scholar 

  • Zheng H, Tang C, Yin C (2015) Oral delivery of shRNA based on amino acid modified chitosan for improved antitumor efficacy. Biomaterials 70:126–137

    CAS  PubMed  Google Scholar 

  • Zheng F et al (2016) Development of oral DNA vaccine based on chitosan nanoparticles for the immunization against reddish body iridovirus in turbots (Scophthalmus maximus). Aquaculture 452:263–271

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Abedin Dorkoosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baradaran Eftekhari, R., Maghsoudnia, N., Samimi, S., Abedin Dorkoosh, F. (2019). Application of Chitosan in Oral Drug Delivery. In: Jana, S., Jana, S. (eds) Functional Chitosan. Springer, Singapore. https://doi.org/10.1007/978-981-15-0263-7_2

Download citation

Publish with us

Policies and ethics