Skip to main content

Introduction to Video Compression

  • Chapter
  • First Online:
Hybrid Video Compression Standard

Abstract

With the sharing of video content over an Internet or communication channel, the compression of it is necessary. This chapter presents an overview of video compression, various types of video compression standards, and video quality matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Capon, J. (1959). A probabilistic model for run-length coding of pictures. IRE Transactions on Information Theory, 5(4), 157–163.

    Article  MathSciNet  Google Scholar 

  2. Watkinson, J. (2012). The MPEG handbook. New York: Routledge.

    Book  Google Scholar 

  3. Pereira, F. (2011, May). Video compression: An evolving technology for better user experiences. In 2011 2nd National Conference on Telecommunications (CONATEL) (pp. 1–6). IEEE.

    Google Scholar 

  4. Farias, M. C., Carvalho, M. M., Kussaba, H. T., & Noronha, B. H. (2011, June). A hybrid metric for digital video quality assessment. In 2011 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB) (pp. 1–6). IEEE.

    Google Scholar 

  5. Ouni, T., Ayedi, W., & Abid, M. (2009, May). New low complexity DCT based video compression method. In 2009 International Conference on Telecommunications, ICT’09 (pp. 202–207). IEEE.

    Google Scholar 

  6. Clarke, R. J. (1995). Digital compression of still images and video. Cambridge: Academic Press Inc.

    Google Scholar 

  7. Ponlatha, S., & Sabeenian, R. S. (2013). Comparison of video compression standards. International Journal of Computer and Electrical Engineering, 5(6), 549–554.

    Article  Google Scholar 

  8. Xiong, Z., Ramchandran, K., Orchard, M. T., & Zhang, Y. Q. (1999). A comparative study of DCT-and wavelet-based image coding. IEEE Transactions on Circuits and Systems for Video Technology, 9(5), 692–695.

    Article  Google Scholar 

  9. Wiegand, T., Sullivan, G. J., Bjontegaard, G., & Luthra, A. (2003). Overview of the H. 264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, 13(7), 560–576.

    Google Scholar 

  10. Marpe, D., Wiegand, T., & Sullivan, G. J. (2006). The H. 264/MPEG4 advanced video coding standard and its applications. Communications Magazine, IEEE, 44(8), 134–143.

    Google Scholar 

  11. Furht, B. (1995). A survey of multimedia compression techniques and standards. Part II: Video compression. Real-Time Imaging, 1(5), 319–337.

    Google Scholar 

  12. ISO/IEC JTC 1. (2003). Advanced video coding. ISO/IEC FDIS 14496-10, International Standard.

    Google Scholar 

  13. Seferidis, V. E., & Ghanbari, M. (1993). General approach to block-matching motion estimation. Optical Engineering, 32(7), 1464–1474.

    Article  Google Scholar 

  14. Gharavi, H., & Mills, M. (1990). Block matching motion estimation algorithms-new results. IEEE Transactions on Circuits and Systems, 37(5), 649–651.

    Article  Google Scholar 

  15. Choi, W. Y., & Park, R. H. (1989). Motion vector coding with conditional transmission. Signal Processing, 18(3), 259–267.

    Article  Google Scholar 

  16. Herlekar, S., & Kak, S. C. (2002). Performance analysis of a d-sequence based Direct Sequence CDMA system. LSU report.

    Google Scholar 

  17. Kak, S. C., & Chatterjee, A. (1981). On decimal sequences (Corresp.). IEEE Transactions on Information Theory, 27(5), 647–652.

    Google Scholar 

  18. Kak, S. C. (1987). Generating d-sequences. Electronics Letters, 23(5), 202–203.

    Article  Google Scholar 

  19. Kak, S. C. (1987). New result on d-sequences. Electronics Letters, 23(12), 617.

    Article  Google Scholar 

  20. Kak, S. C. (1985). Encryption and error-correction coding using D sequences. IEEE Transactions on Computers, 34(9), September.

    Google Scholar 

  21. Costa, C. E., Eisenberg, Y., Zhai, F., & Katsaggelos, A. K. (2004, June). Energy efficient wireless transmission of MPEG-4 fine granular scalable video. In 2004 IEEE International Conference on Communications (Vol. 5, pp. 3096–3100). IEEE.

    Google Scholar 

  22. Luna, C. E., Eisenberg, Y., Berry, R., Pappas, T. N., & Katsaggelos, A. K. (2003). Joint source coding and data rate adaptation for energy efficient wireless video streaming. IEEE Journal on Selected Areas in Communications, 21(10), 1710–1720.

    Article  Google Scholar 

  23. Chien, S., Huang, Y., Chen, C., Chen, H. H., & Chen, L. (2005). Hardware architecture design of video compression for multimedia communication systems. IEEE Communications Magazine, 43(8), 123.

    Article  Google Scholar 

  24. Segall, C. A., & Katsaggelos, A. K. (2000, October). Pre-and post-processing algorithms for compressed video enhancement. In Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Vol. 2, pp. 1369–1373). IEEE.

    Google Scholar 

  25. Kondi, L. P., Ishtiaq, F., & Katsaggelos, A. K. (2002). Joint source-channel coding for motion-compensated DCT-based SNR scalable video. IEEE Transactions on Image Processing, 11(9), 1043–1052.

    Article  Google Scholar 

  26. Eisenberg, Y., Luna, C. E., Pappas, T. N., Berry, R., & Katsaggelos, A. K. (2002). Joint source coding and transmission power management for energy efficient wireless video communications. IEEE Transactions on Circuits and Systems for Video Technology, 12(6), 411–424.

    Article  Google Scholar 

  27. Wang, H., Schuster, G. M., & Katsaggelos, A. K. (2003, September). Object-based video compression scheme with optimal bit allocation among shape, motion and texture. In Proceedings 2003 International Conference on Image Processing. ICIP 2003 (Vol. 3, pp. III-785). IEEE.

    Google Scholar 

  28. Huffman, D. A. (1952). A method for the construction of minimum redundancy codes. Proceedings of the IRE, 40(9), 1098–1101.

    Article  Google Scholar 

  29. Li, Z., & Katsaggelos, A. K. (2002). A color vector quantization-based video coder. In Proceedings 2002 International Conference on Image Processing (Vol. 3, pp. III-673). IEEE.

    Google Scholar 

  30. Moorthy, A. K., & Bovik, A. C. (2011, June). H. 264 visually lossless compressibility index: Psychophysics and algorithm design. In IVMSP Workshop, 2011 IEEE 10th (pp. 111–116). IEEE.

    Google Scholar 

  31. Fu, P., Xiong, H., & Yang, H. (2011, May). A motion estimation algorithm for educational video compression. In 2011 Workshop on Digital Media and Digital Content Management (DMDCM) (pp. 257–260). IEEE.

    Google Scholar 

  32. Thiesse, J. M., Jung, J., & Antonini, M. (2010, October). Data hiding of motion information in chroma and luma samples for video compression. In 2010 IEEE International Workshop on Multimedia Signal Processing (MMSP) (pp. 217–221). IEEE.

    Google Scholar 

  33. Suresh, G., Epsiba, P., Rajaram, D. M., & Sivanandam, D. S. A low complex scalable spatial adjacency ACC-DCT based video compression method. In 2010 Second International Conference on Computing, Communication and Networking Technologies.

    Google Scholar 

  34. Chen, W. Y., Ding, L. F., Tsung, P. K., & Chen, L. G. (2008, June). Architecture design of high-performance embedded compression for high definition video coding. In 2008 IEEE International Conference on Multimedia and Expo (pp. 825–828). IEEE.

    Google Scholar 

  35. Alvarez, L. D., Molina, R., & Katsaggelos, A. K. (2004, October). Motion estimation in high resolution image reconstruction from compressed video sequences. In 2004 International Conference on Image Processing, ICIP’04. (Vol. 3, pp. 1795–1798). IEEE.

    Google Scholar 

  36. Sullivan, G. J., Topiwala, P. N., & Luthra, A. (2004, November). The H. 264/AVC advanced video coding standard: Overview and introduction to the fidelity range extensions. In Optical Science and Technology, the SPIE 49th Annual Meeting (pp. 454–474). International Society for Optics and Photonics.

    Google Scholar 

  37. Sullivan, G. J., & Wiegand, T. (2005). Video compression-from concepts to the H. 264/AVC standard. Proceedings of the IEEE, 93(1), 18–31.

    Google Scholar 

  38. Cheung, W. F., & Chan, Y. H. (2001, June). Improving MPEG-4 coding performance by jointly optimising compression and blocking effect elimination. In IEE Proceedings-Vision, Image and Signal Processing (Vol. 148, No. 3, pp. 194–201). IET.

    Google Scholar 

  39. Jiang, J., Xia, J., & Xiao, G. (2006). MPEG-2 based lossless video compression. IEE Proceedings-Vision, Image and Signal Processing, 153(2), 244–252.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhaval R. Bhojani .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhojani, D., Dwivedi, V., Thanki, R. (2020). Introduction to Video Compression. In: Hybrid Video Compression Standard. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-15-0245-3_1

Download citation

Publish with us

Policies and ethics