Abstract
The present study gives a brief introduction to sum-frequency generation (SFG) vibrational spectroscopy with an overview of the role of second-order nonlinear optical process. Here, we have emphasized on theoretical aspects of the SFG spectroscopy and the spectral analysis to extract the molecular structure and orientation of interfacial molecules. The interfacial structural information of various polymer materials plays an important role to determine properties like adhesion, friction, and wettability. Therefore, we have investigated the molecular structure of polydimethylsiloxane (PDMS) polymer films at the air/polymer interface by using SFG spectroscopy. The vibrational signatures of the PDMS polymer and the intensity of the SFG signal are recorded by varying the molecular weight of the PDMS polymer. The average orientation tilt angle and angular distribution width of methyl groups for each PDMS polymer are determined. The SFG results reveal the change in the intensity of SFG signals and the change in molecular tilt angle and angular distribution of methyl groups at air/PDMS film interface with the variation in the molecular weight of PDMS. The SFG spectral analysis reveals that the molecular tilt angle of the methyl group varies from ~49° to 75° with respect to the surface normal and the angular distribution varies from ~0° to 30° for all the PDMS polymer samples. It is interesting to find that the tilt angle of the methyl functional group of the PDMS polymer at the air/polymer interface can be controlled by varying the molecular weight of the polymer.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
S. Cosnier, Biosens. Bioelectron. 14(5), 443–456 (1999)
L. Dreesen, Y. Sartenaer, C. Humbert, A.A. Mani, J.J. Lemaire, C. Methivier, C.M. Pradier, P.A. Thiry, A. Peremans, Thin Solid Films 464, 373–378 (2004)
F.M. Geiger, Annu. Rev. Phys. Chem. 60, 61–83 (2009)
D.R. Moberg, S.C. Straight, F. Paesani, J. Phys. Chem. B 122(15), 4356–4365 (2018)
W. Liu, L. Fu, Z. Wang, Z. Sohrabpour, X. Li, Y. Liu, H.F. Wang, E.C. Yan, Phys. Chem. Chem. Phys. 20(35), 22421–22426 (2018)
M. Pazgier, X. Li, W. Lu, J. Lubkowski, Curr. Pharm. Des. 13(30), 3096–3118 (2007)
J.D. Horvath, A. Koritnik, P. Kamakoti, D.S. Sholl, A.J. Gellman, J. Am. Chem. Soc. 126(45), 14988–14994 (2004)
S.R. Walter, J. Youn, J.D. Emery, S. Kewalramani, J.W. Hennek, M.J. Bedzyk, A. Facchetti, T.J. Marks, F.M. Geiger, J. Am. Chem. Soc. 134(28), 11726–11733 (2012)
X. Lu, C. Zhang, N. Ulrich, M. Xiao, Y.H. Ma, Z. Chen, Anal. Chem. 89(1), 466–489 (2017)
Y.R. Shen, Nature 337(6207), 519–525 (1989)
P.B. Miranda, Y.R. Shen, J. Phys. Chem. B 103(17), 3292–3307 (1999)
S. Roy, P.A. Covert, T.A. Jarisz, C. Chan, D.K. Hore, Anal. Chem. 88(9), 4682–4691 (2016)
K.C. Jena, P.A. Covert, D.K. Hore, J. Phys. Chem. Lett. 2(9), 1056–1061 (2011)
K.C. Jena, R. Scheu, S. Roke, Angew. Chem. 124(52), 13112–13114 (2012)
K.C. Jena, D.K. Hore, J. Phys. Chem. C 113(34), 15364–15372 (2009)
P.A. Covert, K.C. Jena, D.K. Hore, J. Phys. Chem. Lett. 5(1), 143–148 (2013)
P.M. Kearns, D.B. O’Brien, A.M. Massari, J. Phys. Chem. Lett. 7(1), 62–68 (2015)
S. Das, M. Bonn, E.H. Backus, J. Chem. Phys. 150(4), 044706 (2019)
K.C. Jena, R. Scheu, S. Roke, Angew. Chem. Int. Ed. 51(52), 12938–12940 (2012)
L.B. Dreier, Y. Nagata, H. Lutz, G. Gonella, J. Hunger, E.H. Backus, M. Bonn, Sci. Adv. 4(3), 7415 (2018)
C. Zhang, Appl. Spectrosc. 71(8), 1717–1749 (2017)
K.C. Jena, P.A. Covert, S.A. Hall, D.K. Hore, J. Phys. Chem. C 115(31), 15570–15574 (2011)
B.D. Rataner, D.G. Castner, Surface Modification of Polymeric Biomaterials (Plenum Press, New York, 1996)
W.J. Feast, H.S. Munro, Polymer Surfaces and Interfaces (Wiley, New York, 1987)
J.B. Park, R.S. Lakes, Biomaterials: An Introduction (Plenum Press, New York, 1992)
R.W. Richards, S.K. Peace, Polymer Surfaces and Interfaces III (Wiley, Chichester, 1999)
F.C. Maia, P.B. Miranda, J. Phys. Chem. C 119(13), 7386–7399 (2015)
L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu, Adv. Mater. 14(24), 1857–1860 (2002)
H. Otsuka, Y. Nagasaki, K. Kataoka, Adv. Drug Deliv. Rev. 55(3), 403–419 (2003)
K.T. Lim, S.E. Webber, K.P. Johnston, Macromolecules 32(9), 2811–2815 (1999)
J.S. Turner, Y.L. Cheng, Macromolecules 33(10), 3714–3718 (2000)
M. Ma, R.M. Hill, J.L. Lowery, S.V. Fridrikhand, G.C. Rutledge, Langmuir 21(12), 5549–5554 (2005)
S.D. Smith, J.M. DeSimone, H. Huang, G. York, D.W. Dwight, G.L. Wilkesand, J.E. McGrath, Macromolecules 25(10), 2575–2581 (1992)
Q. Dou, C. Wang, C. Cheng, W. Han, P.C. Thune, W. Ming, Macromol. Chem. Phys. 207(23), 2170–2179 (2006)
H. Ye, Z. Gu, D.H. Gracias, Langmuir 22(4), 1863–1868 (2006)
C. Chen, J. Wangand, Z. Chen, Langmuir 20(23), 10186–10193 (2004)
C. Kim, M.C. Gurau, P.S. Cremer, H. Yu, Langmuir 24(18), 10155–10160 (2008)
A.G. Lambert, P.B. Davies, D.J. Neivandt, Appl. Spectrosc. Rev. 40(2), 103–145 (2005)
Y.R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984)
Y. Tong, Y. Zhao, N. Li, M. Osawa, P.B. Davies, S. Ye, J. Chem. Phys. 133(3), 034704 (2010)
R.W. Boyd, Nonlinear Optics (Academic Press, New York, 2003)
S.A. Hall, K.C. Jena, P.A. Covert, S. Roy, T.G. Trudeau, D.K. Hore, J. Phys. Chem. B 118(21), 5617–5636 (2014)
K.C. Jena, P.A. Covert, D.K. Hore, J. Chem. Phys. 134(4), 044712 (2011)
C.G.T. Feugmo, V. Liegeois, B. Champagne, J. Phys. Chem. C 119(6), 3180–3191 (2015)
J. Lobau, K. Wolfrum, J. Opt. Soc. Am. B 14(10), 2505–2512 (1997)
E.H. Backus, N. Garcia-Araez, M. Bonn, H.J. Bakker, J. Phys. Chem. C 116(44), 23351–23361 (2012)
J.M. Hankett, Y. Liu, X. Zhang, C. Zhang, Z. Chen, J. Polym. Sci., Part B: Polym. Phys. 51(5), 311–328 (2013)
K.C. Jena, K.-K. Hung, T.R. Schwantje, D.K. Hore, J. Chem. Phys. 135(4), 044704 (2011)
S.A. Hall, K.C. Jena, T.G. Trudeau, D.K. Hore, J. Phys. Chem. C 115(22), 11216–11225 (2011)
X. Lu, M.L. Clarke, D. Li, X. Wang, G. Xue, Z. Chen, J. Phys. Chem. C 115(28), 13759–13767 (2011)
K.C. Jena, D.K. Hore, Phys. Chem. Chem. Phys. 12(43), 14383–14404 (2010)
P. Guyot-Sionnest, J. Hunt, Y.R. Shen, Phys. Rev. Lett. 59(14), 1597–1600 (1987)
B. Li, X. Lu, X. Han, F.G. Wu, J.N. Myers, Z. Chen, J. Phys. Chem. C 118(49), 28631–28639 (2014)
A. Kurian, S. Prasad, A. Dhinojwala, Macromolecules 43(5), 2438–2443 (2010)
C. Zhang, Z. Chen, J. Phys. Chem. C 117(8), 3903–3914 (2013)
P.E. Ciddor, Appl. Opt. 35(9), 1566–1573 (1996)
R.J. Mathar, J. Opt. A: Pure Appl. Opt. 9(5), 470–476 (2007)
E.D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic Press, London, 1998)
F. Schneider, J. Draheim, R. Kamberger, U. Wallrabe, Sens. Actuators A: Phys. 151(2), 95–99 (2009)
M. Querry, Optical constants of minerals and other materials from the millimeter to the ultraviolet. Contractor Report CRDEC-CR-88009, Chemical Research Development and Engineering Center, Aberdeen Proving Ground, Aberdeen, MD, USA (1987)
M. Inutsuka, M. Haraguchi, M. Ozawa, N.L. Yamada, K. Tanaka, ACS Macro Lett. 8(3), 267–271 (2019)
Acknowledgements
The authors acknowledge support from the Department of Physics, Indian Institute of Technology Ropar for SEED Grant and central facility grant, and Defence Research and Development Organisation (ERIP/ER/1500487/M/01/1602).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Kaur, H., Tomar, D., Kaur, H., Rana, B., Chaudhary, S., Jena, K.C. (2019). Sum-Frequency Generation Vibrational Spectroscopy: A Nonlinear Optical Tool to Probe the Polymer Interfaces. In: Singh, D., Das, S., Materny, A. (eds) Advances in Spectroscopy: Molecules to Materials. Springer Proceedings in Physics, vol 236. Springer, Singapore. https://doi.org/10.1007/978-981-15-0202-6_3
Download citation
DOI: https://doi.org/10.1007/978-981-15-0202-6_3
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-0201-9
Online ISBN: 978-981-15-0202-6
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)