Skip to main content

Sum-Frequency Generation Vibrational Spectroscopy: A Nonlinear Optical Tool to Probe the Polymer Interfaces

  • Conference paper
  • First Online:
Advances in Spectroscopy: Molecules to Materials

Part of the book series: Springer Proceedings in Physics ((volume 236))

Abstract

The present study gives a brief introduction to sum-frequency generation (SFG) vibrational spectroscopy with an overview of the role of second-order nonlinear optical process. Here, we have emphasized on theoretical aspects of the SFG spectroscopy and the spectral analysis to extract the molecular structure and orientation of interfacial molecules. The interfacial structural information of various polymer materials plays an important role to determine properties like adhesion, friction, and wettability. Therefore, we have investigated the molecular structure of polydimethylsiloxane (PDMS) polymer films at the air/polymer interface by using SFG spectroscopy. The vibrational signatures of the PDMS polymer and the intensity of the SFG signal are recorded by varying the molecular weight of the PDMS polymer. The average orientation tilt angle and angular distribution width of methyl groups for each PDMS polymer are determined. The SFG results reveal the change in the intensity of SFG signals and the change in molecular tilt angle and angular distribution of methyl groups at air/PDMS film interface with the variation in the molecular weight of PDMS. The SFG spectral analysis reveals that the molecular tilt angle of the methyl group varies from ~49° to 75° with respect to the surface normal and the angular distribution varies from ~0° to 30° for all the PDMS polymer samples. It is interesting to find that the tilt angle of the methyl functional group of the PDMS polymer at the air/polymer interface can be controlled by varying the molecular weight of the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Cosnier, Biosens. Bioelectron. 14(5), 443–456 (1999)

    Article  Google Scholar 

  2. L. Dreesen, Y. Sartenaer, C. Humbert, A.A. Mani, J.J. Lemaire, C. Methivier, C.M. Pradier, P.A. Thiry, A. Peremans, Thin Solid Films 464, 373–378 (2004)

    Article  ADS  Google Scholar 

  3. F.M. Geiger, Annu. Rev. Phys. Chem. 60, 61–83 (2009)

    Article  ADS  Google Scholar 

  4. D.R. Moberg, S.C. Straight, F. Paesani, J. Phys. Chem. B 122(15), 4356–4365 (2018)

    Article  Google Scholar 

  5. W. Liu, L. Fu, Z. Wang, Z. Sohrabpour, X. Li, Y. Liu, H.F. Wang, E.C. Yan, Phys. Chem. Chem. Phys. 20(35), 22421–22426 (2018)

    Article  Google Scholar 

  6. M. Pazgier, X. Li, W. Lu, J. Lubkowski, Curr. Pharm. Des. 13(30), 3096–3118 (2007)

    Article  Google Scholar 

  7. J.D. Horvath, A. Koritnik, P. Kamakoti, D.S. Sholl, A.J. Gellman, J. Am. Chem. Soc. 126(45), 14988–14994 (2004)

    Article  Google Scholar 

  8. S.R. Walter, J. Youn, J.D. Emery, S. Kewalramani, J.W. Hennek, M.J. Bedzyk, A. Facchetti, T.J. Marks, F.M. Geiger, J. Am. Chem. Soc. 134(28), 11726–11733 (2012)

    Article  Google Scholar 

  9. X. Lu, C. Zhang, N. Ulrich, M. Xiao, Y.H. Ma, Z. Chen, Anal. Chem. 89(1), 466–489 (2017)

    Article  Google Scholar 

  10. Y.R. Shen, Nature 337(6207), 519–525 (1989)

    Article  ADS  Google Scholar 

  11. P.B. Miranda, Y.R. Shen, J. Phys. Chem. B 103(17), 3292–3307 (1999)

    Article  Google Scholar 

  12. S. Roy, P.A. Covert, T.A. Jarisz, C. Chan, D.K. Hore, Anal. Chem. 88(9), 4682–4691 (2016)

    Article  Google Scholar 

  13. K.C. Jena, P.A. Covert, D.K. Hore, J. Phys. Chem. Lett. 2(9), 1056–1061 (2011)

    Article  Google Scholar 

  14. K.C. Jena, R. Scheu, S. Roke, Angew. Chem. 124(52), 13112–13114 (2012)

    Article  Google Scholar 

  15. K.C. Jena, D.K. Hore, J. Phys. Chem. C 113(34), 15364–15372 (2009)

    Article  Google Scholar 

  16. P.A. Covert, K.C. Jena, D.K. Hore, J. Phys. Chem. Lett. 5(1), 143–148 (2013)

    Article  Google Scholar 

  17. P.M. Kearns, D.B. O’Brien, A.M. Massari, J. Phys. Chem. Lett. 7(1), 62–68 (2015)

    Article  Google Scholar 

  18. S. Das, M. Bonn, E.H. Backus, J. Chem. Phys. 150(4), 044706 (2019)

    Article  ADS  Google Scholar 

  19. K.C. Jena, R. Scheu, S. Roke, Angew. Chem. Int. Ed. 51(52), 12938–12940 (2012)

    Article  Google Scholar 

  20. L.B. Dreier, Y. Nagata, H. Lutz, G. Gonella, J. Hunger, E.H. Backus, M. Bonn, Sci. Adv. 4(3), 7415 (2018)

    Article  ADS  Google Scholar 

  21. C. Zhang, Appl. Spectrosc. 71(8), 1717–1749 (2017)

    Article  ADS  Google Scholar 

  22. K.C. Jena, P.A. Covert, S.A. Hall, D.K. Hore, J. Phys. Chem. C 115(31), 15570–15574 (2011)

    Article  Google Scholar 

  23. B.D. Rataner, D.G. Castner, Surface Modification of Polymeric Biomaterials (Plenum Press, New York, 1996)

    Google Scholar 

  24. W.J. Feast, H.S. Munro, Polymer Surfaces and Interfaces (Wiley, New York, 1987)

    Google Scholar 

  25. J.B. Park, R.S. Lakes, Biomaterials: An Introduction (Plenum Press, New York, 1992)

    Book  Google Scholar 

  26. R.W. Richards, S.K. Peace, Polymer Surfaces and Interfaces III (Wiley, Chichester, 1999)

    Google Scholar 

  27. F.C. Maia, P.B. Miranda, J. Phys. Chem. C 119(13), 7386–7399 (2015)

    Article  Google Scholar 

  28. L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu, Adv. Mater. 14(24), 1857–1860 (2002)

    Article  Google Scholar 

  29. H. Otsuka, Y. Nagasaki, K. Kataoka, Adv. Drug Deliv. Rev. 55(3), 403–419 (2003)

    Article  Google Scholar 

  30. K.T. Lim, S.E. Webber, K.P. Johnston, Macromolecules 32(9), 2811–2815 (1999)

    Article  ADS  Google Scholar 

  31. J.S. Turner, Y.L. Cheng, Macromolecules 33(10), 3714–3718 (2000)

    Article  ADS  Google Scholar 

  32. M. Ma, R.M. Hill, J.L. Lowery, S.V. Fridrikhand, G.C. Rutledge, Langmuir 21(12), 5549–5554 (2005)

    Article  Google Scholar 

  33. S.D. Smith, J.M. DeSimone, H. Huang, G. York, D.W. Dwight, G.L. Wilkesand, J.E. McGrath, Macromolecules 25(10), 2575–2581 (1992)

    Article  ADS  Google Scholar 

  34. Q. Dou, C. Wang, C. Cheng, W. Han, P.C. Thune, W. Ming, Macromol. Chem. Phys. 207(23), 2170–2179 (2006)

    Article  Google Scholar 

  35. H. Ye, Z. Gu, D.H. Gracias, Langmuir 22(4), 1863–1868 (2006)

    Article  Google Scholar 

  36. C. Chen, J. Wangand, Z. Chen, Langmuir 20(23), 10186–10193 (2004)

    Article  Google Scholar 

  37. C. Kim, M.C. Gurau, P.S. Cremer, H. Yu, Langmuir 24(18), 10155–10160 (2008)

    Article  Google Scholar 

  38. A.G. Lambert, P.B. Davies, D.J. Neivandt, Appl. Spectrosc. Rev. 40(2), 103–145 (2005)

    Article  ADS  Google Scholar 

  39. Y.R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984)

    Google Scholar 

  40. Y. Tong, Y. Zhao, N. Li, M. Osawa, P.B. Davies, S. Ye, J. Chem. Phys. 133(3), 034704 (2010)

    Article  ADS  Google Scholar 

  41. R.W. Boyd, Nonlinear Optics (Academic Press, New York, 2003)

    Google Scholar 

  42. S.A. Hall, K.C. Jena, P.A. Covert, S. Roy, T.G. Trudeau, D.K. Hore, J. Phys. Chem. B 118(21), 5617–5636 (2014)

    Article  Google Scholar 

  43. K.C. Jena, P.A. Covert, D.K. Hore, J. Chem. Phys. 134(4), 044712 (2011)

    Article  ADS  Google Scholar 

  44. C.G.T. Feugmo, V. Liegeois, B. Champagne, J. Phys. Chem. C 119(6), 3180–3191 (2015)

    Article  Google Scholar 

  45. J. Lobau, K. Wolfrum, J. Opt. Soc. Am. B 14(10), 2505–2512 (1997)

    Article  ADS  Google Scholar 

  46. E.H. Backus, N. Garcia-Araez, M. Bonn, H.J. Bakker, J. Phys. Chem. C 116(44), 23351–23361 (2012)

    Article  Google Scholar 

  47. J.M. Hankett, Y. Liu, X. Zhang, C. Zhang, Z. Chen, J. Polym. Sci., Part B: Polym. Phys. 51(5), 311–328 (2013)

    Article  ADS  Google Scholar 

  48. K.C. Jena, K.-K. Hung, T.R. Schwantje, D.K. Hore, J. Chem. Phys. 135(4), 044704 (2011)

    Article  ADS  Google Scholar 

  49. S.A. Hall, K.C. Jena, T.G. Trudeau, D.K. Hore, J. Phys. Chem. C 115(22), 11216–11225 (2011)

    Article  Google Scholar 

  50. X. Lu, M.L. Clarke, D. Li, X. Wang, G. Xue, Z. Chen, J. Phys. Chem. C 115(28), 13759–13767 (2011)

    Article  Google Scholar 

  51. K.C. Jena, D.K. Hore, Phys. Chem. Chem. Phys. 12(43), 14383–14404 (2010)

    Article  Google Scholar 

  52. P. Guyot-Sionnest, J. Hunt, Y.R. Shen, Phys. Rev. Lett. 59(14), 1597–1600 (1987)

    Article  ADS  Google Scholar 

  53. B. Li, X. Lu, X. Han, F.G. Wu, J.N. Myers, Z. Chen, J. Phys. Chem. C 118(49), 28631–28639 (2014)

    Article  Google Scholar 

  54. A. Kurian, S. Prasad, A. Dhinojwala, Macromolecules 43(5), 2438–2443 (2010)

    Article  ADS  Google Scholar 

  55. C. Zhang, Z. Chen, J. Phys. Chem. C 117(8), 3903–3914 (2013)

    Article  Google Scholar 

  56. P.E. Ciddor, Appl. Opt. 35(9), 1566–1573 (1996)

    Article  ADS  Google Scholar 

  57. R.J. Mathar, J. Opt. A: Pure Appl. Opt. 9(5), 470–476 (2007)

    Article  ADS  Google Scholar 

  58. E.D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic Press, London, 1998)

    Google Scholar 

  59. F. Schneider, J. Draheim, R. Kamberger, U. Wallrabe, Sens. Actuators A: Phys. 151(2), 95–99 (2009)

    Article  Google Scholar 

  60. M. Querry, Optical constants of minerals and other materials from the millimeter to the ultraviolet. Contractor Report CRDEC-CR-88009, Chemical Research Development and Engineering Center, Aberdeen Proving Ground, Aberdeen, MD, USA (1987)

    Google Scholar 

  61. M. Inutsuka, M. Haraguchi, M. Ozawa, N.L. Yamada, K. Tanaka, ACS Macro Lett. 8(3), 267–271 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Department of Physics, Indian Institute of Technology Ropar for SEED Grant and central facility grant, and Defence Research and Development Organisation (ERIP/ER/1500487/M/01/1602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailash C. Jena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaur, H., Tomar, D., Kaur, H., Rana, B., Chaudhary, S., Jena, K.C. (2019). Sum-Frequency Generation Vibrational Spectroscopy: A Nonlinear Optical Tool to Probe the Polymer Interfaces. In: Singh, D., Das, S., Materny, A. (eds) Advances in Spectroscopy: Molecules to Materials. Springer Proceedings in Physics, vol 236. Springer, Singapore. https://doi.org/10.1007/978-981-15-0202-6_3

Download citation

Publish with us

Policies and ethics