Sum-Frequency Generation Vibrational Spectroscopy: A Nonlinear Optical Tool to Probe the Polymer Interfaces

  • Harpreet Kaur
  • Deepak Tomar
  • Harsharan Kaur
  • Bhawna Rana
  • Shilpi Chaudhary
  • Kailash C. JenaEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 236)


The present study gives a brief introduction to sum-frequency generation (SFG) vibrational spectroscopy with an overview of the role of second-order nonlinear optical process. Here, we have emphasized on theoretical aspects of the SFG spectroscopy and the spectral analysis to extract the molecular structure and orientation of interfacial molecules. The interfacial structural information of various polymer materials plays an important role to determine properties like adhesion, friction, and wettability. Therefore, we have investigated the molecular structure of polydimethylsiloxane (PDMS) polymer films at the air/polymer interface by using SFG spectroscopy. The vibrational signatures of the PDMS polymer and the intensity of the SFG signal are recorded by varying the molecular weight of the PDMS polymer. The average orientation tilt angle and angular distribution width of methyl groups for each PDMS polymer are determined. The SFG results reveal the change in the intensity of SFG signals and the change in molecular tilt angle and angular distribution of methyl groups at air/PDMS film interface with the variation in the molecular weight of PDMS. The SFG spectral analysis reveals that the molecular tilt angle of the methyl group varies from ~49° to 75° with respect to the surface normal and the angular distribution varies from ~0° to 30° for all the PDMS polymer samples. It is interesting to find that the tilt angle of the methyl functional group of the PDMS polymer at the air/polymer interface can be controlled by varying the molecular weight of the polymer.


Sum-frequency generation vibrational spectroscopy Interface Fresnel correction factors Interfacial structure Molecular tilt angle Polydimethylsiloxane 



The authors acknowledge support from the Department of Physics, Indian Institute of Technology Ropar for SEED Grant and central facility grant, and Defence Research and Development Organisation (ERIP/ER/1500487/M/01/1602).


  1. 1.
    S. Cosnier, Biosens. Bioelectron. 14(5), 443–456 (1999)CrossRefGoogle Scholar
  2. 2.
    L. Dreesen, Y. Sartenaer, C. Humbert, A.A. Mani, J.J. Lemaire, C. Methivier, C.M. Pradier, P.A. Thiry, A. Peremans, Thin Solid Films 464, 373–378 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    F.M. Geiger, Annu. Rev. Phys. Chem. 60, 61–83 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    D.R. Moberg, S.C. Straight, F. Paesani, J. Phys. Chem. B 122(15), 4356–4365 (2018)CrossRefGoogle Scholar
  5. 5.
    W. Liu, L. Fu, Z. Wang, Z. Sohrabpour, X. Li, Y. Liu, H.F. Wang, E.C. Yan, Phys. Chem. Chem. Phys. 20(35), 22421–22426 (2018)CrossRefGoogle Scholar
  6. 6.
    M. Pazgier, X. Li, W. Lu, J. Lubkowski, Curr. Pharm. Des. 13(30), 3096–3118 (2007)CrossRefGoogle Scholar
  7. 7.
    J.D. Horvath, A. Koritnik, P. Kamakoti, D.S. Sholl, A.J. Gellman, J. Am. Chem. Soc. 126(45), 14988–14994 (2004)CrossRefGoogle Scholar
  8. 8.
    S.R. Walter, J. Youn, J.D. Emery, S. Kewalramani, J.W. Hennek, M.J. Bedzyk, A. Facchetti, T.J. Marks, F.M. Geiger, J. Am. Chem. Soc. 134(28), 11726–11733 (2012)CrossRefGoogle Scholar
  9. 9.
    X. Lu, C. Zhang, N. Ulrich, M. Xiao, Y.H. Ma, Z. Chen, Anal. Chem. 89(1), 466–489 (2017)CrossRefGoogle Scholar
  10. 10.
    Y.R. Shen, Nature 337(6207), 519–525 (1989)ADSCrossRefGoogle Scholar
  11. 11.
    P.B. Miranda, Y.R. Shen, J. Phys. Chem. B 103(17), 3292–3307 (1999)CrossRefGoogle Scholar
  12. 12.
    S. Roy, P.A. Covert, T.A. Jarisz, C. Chan, D.K. Hore, Anal. Chem. 88(9), 4682–4691 (2016)CrossRefGoogle Scholar
  13. 13.
    K.C. Jena, P.A. Covert, D.K. Hore, J. Phys. Chem. Lett. 2(9), 1056–1061 (2011)CrossRefGoogle Scholar
  14. 14.
    K.C. Jena, R. Scheu, S. Roke, Angew. Chem. 124(52), 13112–13114 (2012)CrossRefGoogle Scholar
  15. 15.
    K.C. Jena, D.K. Hore, J. Phys. Chem. C 113(34), 15364–15372 (2009)CrossRefGoogle Scholar
  16. 16.
    P.A. Covert, K.C. Jena, D.K. Hore, J. Phys. Chem. Lett. 5(1), 143–148 (2013)CrossRefGoogle Scholar
  17. 17.
    P.M. Kearns, D.B. O’Brien, A.M. Massari, J. Phys. Chem. Lett. 7(1), 62–68 (2015)CrossRefGoogle Scholar
  18. 18.
    S. Das, M. Bonn, E.H. Backus, J. Chem. Phys. 150(4), 044706 (2019)ADSCrossRefGoogle Scholar
  19. 19.
    K.C. Jena, R. Scheu, S. Roke, Angew. Chem. Int. Ed. 51(52), 12938–12940 (2012)CrossRefGoogle Scholar
  20. 20.
    L.B. Dreier, Y. Nagata, H. Lutz, G. Gonella, J. Hunger, E.H. Backus, M. Bonn, Sci. Adv. 4(3), 7415 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    C. Zhang, Appl. Spectrosc. 71(8), 1717–1749 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    K.C. Jena, P.A. Covert, S.A. Hall, D.K. Hore, J. Phys. Chem. C 115(31), 15570–15574 (2011)CrossRefGoogle Scholar
  23. 23.
    B.D. Rataner, D.G. Castner, Surface Modification of Polymeric Biomaterials (Plenum Press, New York, 1996)Google Scholar
  24. 24.
    W.J. Feast, H.S. Munro, Polymer Surfaces and Interfaces (Wiley, New York, 1987)Google Scholar
  25. 25.
    J.B. Park, R.S. Lakes, Biomaterials: An Introduction (Plenum Press, New York, 1992)CrossRefGoogle Scholar
  26. 26.
    R.W. Richards, S.K. Peace, Polymer Surfaces and Interfaces III (Wiley, Chichester, 1999)Google Scholar
  27. 27.
    F.C. Maia, P.B. Miranda, J. Phys. Chem. C 119(13), 7386–7399 (2015)CrossRefGoogle Scholar
  28. 28.
    L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu, Adv. Mater. 14(24), 1857–1860 (2002)CrossRefGoogle Scholar
  29. 29.
    H. Otsuka, Y. Nagasaki, K. Kataoka, Adv. Drug Deliv. Rev. 55(3), 403–419 (2003)CrossRefGoogle Scholar
  30. 30.
    K.T. Lim, S.E. Webber, K.P. Johnston, Macromolecules 32(9), 2811–2815 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    J.S. Turner, Y.L. Cheng, Macromolecules 33(10), 3714–3718 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    M. Ma, R.M. Hill, J.L. Lowery, S.V. Fridrikhand, G.C. Rutledge, Langmuir 21(12), 5549–5554 (2005)CrossRefGoogle Scholar
  33. 33.
    S.D. Smith, J.M. DeSimone, H. Huang, G. York, D.W. Dwight, G.L. Wilkesand, J.E. McGrath, Macromolecules 25(10), 2575–2581 (1992)ADSCrossRefGoogle Scholar
  34. 34.
    Q. Dou, C. Wang, C. Cheng, W. Han, P.C. Thune, W. Ming, Macromol. Chem. Phys. 207(23), 2170–2179 (2006)CrossRefGoogle Scholar
  35. 35.
    H. Ye, Z. Gu, D.H. Gracias, Langmuir 22(4), 1863–1868 (2006)CrossRefGoogle Scholar
  36. 36.
    C. Chen, J. Wangand, Z. Chen, Langmuir 20(23), 10186–10193 (2004)CrossRefGoogle Scholar
  37. 37.
    C. Kim, M.C. Gurau, P.S. Cremer, H. Yu, Langmuir 24(18), 10155–10160 (2008)CrossRefGoogle Scholar
  38. 38.
    A.G. Lambert, P.B. Davies, D.J. Neivandt, Appl. Spectrosc. Rev. 40(2), 103–145 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    Y.R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984)Google Scholar
  40. 40.
    Y. Tong, Y. Zhao, N. Li, M. Osawa, P.B. Davies, S. Ye, J. Chem. Phys. 133(3), 034704 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    R.W. Boyd, Nonlinear Optics (Academic Press, New York, 2003)Google Scholar
  42. 42.
    S.A. Hall, K.C. Jena, P.A. Covert, S. Roy, T.G. Trudeau, D.K. Hore, J. Phys. Chem. B 118(21), 5617–5636 (2014)CrossRefGoogle Scholar
  43. 43.
    K.C. Jena, P.A. Covert, D.K. Hore, J. Chem. Phys. 134(4), 044712 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    C.G.T. Feugmo, V. Liegeois, B. Champagne, J. Phys. Chem. C 119(6), 3180–3191 (2015)CrossRefGoogle Scholar
  45. 45.
    J. Lobau, K. Wolfrum, J. Opt. Soc. Am. B 14(10), 2505–2512 (1997)ADSCrossRefGoogle Scholar
  46. 46.
    E.H. Backus, N. Garcia-Araez, M. Bonn, H.J. Bakker, J. Phys. Chem. C 116(44), 23351–23361 (2012)CrossRefGoogle Scholar
  47. 47.
    J.M. Hankett, Y. Liu, X. Zhang, C. Zhang, Z. Chen, J. Polym. Sci., Part B: Polym. Phys. 51(5), 311–328 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    K.C. Jena, K.-K. Hung, T.R. Schwantje, D.K. Hore, J. Chem. Phys. 135(4), 044704 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    S.A. Hall, K.C. Jena, T.G. Trudeau, D.K. Hore, J. Phys. Chem. C 115(22), 11216–11225 (2011)CrossRefGoogle Scholar
  50. 50.
    X. Lu, M.L. Clarke, D. Li, X. Wang, G. Xue, Z. Chen, J. Phys. Chem. C 115(28), 13759–13767 (2011)CrossRefGoogle Scholar
  51. 51.
    K.C. Jena, D.K. Hore, Phys. Chem. Chem. Phys. 12(43), 14383–14404 (2010)CrossRefGoogle Scholar
  52. 52.
    P. Guyot-Sionnest, J. Hunt, Y.R. Shen, Phys. Rev. Lett. 59(14), 1597–1600 (1987)ADSCrossRefGoogle Scholar
  53. 53.
    B. Li, X. Lu, X. Han, F.G. Wu, J.N. Myers, Z. Chen, J. Phys. Chem. C 118(49), 28631–28639 (2014)CrossRefGoogle Scholar
  54. 54.
    A. Kurian, S. Prasad, A. Dhinojwala, Macromolecules 43(5), 2438–2443 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    C. Zhang, Z. Chen, J. Phys. Chem. C 117(8), 3903–3914 (2013)CrossRefGoogle Scholar
  56. 56.
    P.E. Ciddor, Appl. Opt. 35(9), 1566–1573 (1996)ADSCrossRefGoogle Scholar
  57. 57.
    R.J. Mathar, J. Opt. A: Pure Appl. Opt. 9(5), 470–476 (2007)ADSCrossRefGoogle Scholar
  58. 58.
    E.D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic Press, London, 1998)Google Scholar
  59. 59.
    F. Schneider, J. Draheim, R. Kamberger, U. Wallrabe, Sens. Actuators A: Phys. 151(2), 95–99 (2009)CrossRefGoogle Scholar
  60. 60.
    M. Querry, Optical constants of minerals and other materials from the millimeter to the ultraviolet. Contractor Report CRDEC-CR-88009, Chemical Research Development and Engineering Center, Aberdeen Proving Ground, Aberdeen, MD, USA (1987)Google Scholar
  61. 61.
    M. Inutsuka, M. Haraguchi, M. Ozawa, N.L. Yamada, K. Tanaka, ACS Macro Lett. 8(3), 267–271 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Harpreet Kaur
    • 1
  • Deepak Tomar
    • 1
  • Harsharan Kaur
    • 2
  • Bhawna Rana
    • 1
  • Shilpi Chaudhary
    • 3
  • Kailash C. Jena
    • 1
    • 2
    Email author
  1. 1.Department of PhysicsIndian Institute of Technology RoparRupnagarIndia
  2. 2.Center for Biomedical EngineeringIndian Institute of Technology RoparRupnagarIndia
  3. 3.Department of Mechanical EngineeringIndian Institute of Technology RoparRupnagarIndia

Personalised recommendations