Skip to main content

ATR-FTIR Spectroscopy and Its Relevance to Probe the Molecular-Level Interactions Between Amino Acids and Metal-Oxide Nanoparticles at Solid/Aqueous Interface

Part of the Springer Proceedings in Physics book series (SPPHY,volume 236)

Abstract

Amino acids play an important role in the stabilization process of nanoparticles in aqueous solution. The nano–bio combination received considerable attention in various nanoscale applications such as chemical and biological sensing, imaging, biotechnology, medicines, etc. Considering the importance of the nano–bio mimicking system, in the present study we have focused on the structural behavior and the interaction of three amino acids, namely, L-Leucine, L-Cysteine, and L-Serine in the presence of metal-oxide nanoparticles and its impact on bulk water structure. We have employed attenuated total reflectance Fourier-transform infrared (ATR-FTIR) vibrational spectroscopy to probe the structural signatures of the molecular system in the aqueous solution. From the IR spectral features, it is found that the vibrational signatures of the individual amino acids are very sensitive to the number of molecules present in the aqueous bulk solution. However, there is no change in water structure observed with the variation of the amino acid concentrations. Surprisingly, the combination of oxide nanoparticles and the amino acids has a significant impact on the OH-stretching and bending regions of the bulk water for the case of L-Leucine and L-Cysteine. In presence of oxide nanoparticles, it is observed that there is a significant enhancement in the IR absorption intensity with the appearance of new spectral features of amino acids which was not noticed for the case of amino acids in the pristine aqueous environment. However, there is no enhancement in the intensity observed for the case of L-Serine except the spectral features in the fingerprint region.

Keywords

  • ATR-FTIR spectroscopy
  • Amino acids
  • Metal-oxide nanoparticles
  • Nano–Bio mimicking system
  • Bulk water structure

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-0202-6_1
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-0202-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3
Fig. 1.4
Fig. 1.5
Fig. 1.6
Fig. 1.7
Fig. 1.8
Fig. 1.9
Fig. 1.10
Fig. 1.11
Fig. 1.12
Fig. 1.13

References

  1. C.-M. Pradier, Y.J. Chabal, Biointerface Characterization by Advanced IR Spectroscopy, 1st edn. (Elsevier, UK, 2011)

    Google Scholar 

  2. M. Milosevic, Internal Reflection and ATR Spectroscopy, vol. 262 (Wiley, USA, 2012)

    CrossRef  Google Scholar 

  3. B. Kasemo, Surf. Sci. 500(1), 656–677 (2002)

    ADS  CrossRef  Google Scholar 

  4. H. Yang, S. Yang, J. Kong, A. Dong, S. Yu, Nat. Protoc. 10(3), 382–396 (2015)

    CrossRef  Google Scholar 

  5. S. Strazdaite, K. Meister, H.J. Bakker, J. Am. Chem. Soc. 139(10), 3716–3720 (2017)

    CrossRef  Google Scholar 

  6. D. Tomar, S. Chaudhary, K.C. Jena, RSC Adv. 9(22), 12596–12605 (2019)

    CrossRef  Google Scholar 

  7. R.A. Soomro, A. Nafady, N. Memon, T.H. Sherazi, N.H. Kalwar, Talanta 130, 415–422 (2014)

    CrossRef  Google Scholar 

  8. K. Ghanbari, S. Bonyadi, New J. Chem. 42(11), 8512–8523 (2018)

    CrossRef  Google Scholar 

  9. E.A.S. Dimapilis, C.-S. Hsu, R.M.O. Mendoza, M.-C. Lu, Environ. Res. 28(2), 47–56 (2018)

    Google Scholar 

  10. Q. Wu, X. Chen, P. Zhang, Y. Han, X. Chen, Y. Yan, S. Li, Cryst. Growth and Des. 8(8), 3010–3018 (2008)

    CrossRef  Google Scholar 

  11. A. El-Trass, H. ElShamy, I. El-Mehasseb, M. El-Kemary, Appl. Surf. Sci. 258(7), 2997–3001 (2012)

    ADS  CrossRef  Google Scholar 

  12. A. Gankanda, D.M. Cwiertny, V.H. Grassian, J. Phys. Chem. C 120(34), 19195–19203 (2016)

    CrossRef  Google Scholar 

  13. H. Yin, P.S. Casey, M.J. McCall, M. Fenech, Langmuir 26(19), 15399–15408 (2010)

    CrossRef  Google Scholar 

  14. M. Li, L. Zhu, D. Lin, Environ. Sci. Technol. 45(5), 1977–1983 (2011)

    ADS  CrossRef  Google Scholar 

  15. R. Zou, Q. Wang, J. Wu, J. Wu, C. Schmuck, H. Tian, Chem. Soc. Rev. 44(15), 5200–5219 (2015)

    CrossRef  Google Scholar 

  16. Q. Zou, X. Yan, Chem. Eur. J. 24(4), 755–761 (2018)

    CrossRef  Google Scholar 

  17. J.-F. Lambert, Origins Life Evol. Biosph. 8(3), 211–242 (2008)

    ADS  CrossRef  Google Scholar 

  18. E.-J. Lim, S.-H. Park, J.-H. Byun, C.-S. Hwang, Bull. Korean Chem. Soc. 33(5), 1741–1747 (2012)

    CrossRef  Google Scholar 

  19. S.P. Schwaminger, P.F. Garcia, G.K. Merck, F.A. Bodensteiner, S. Heissler, S. Günther, S. Berensmeier, J. Phys. Chem. C 119(40), 23032–23041 (2015)

    CrossRef  Google Scholar 

  20. D. Costa, L. Savio, C.-M. Pradier, J. Phys. Chem. B 120(29), 7039–7052 (2016)

    CrossRef  Google Scholar 

  21. T.J. de Konnig, K. Snell, M. Duran, R. Berger, B.-T. Poll-The, R. Surtees, Biochem. J. 371(3), 653–661 (2003)

    CrossRef  Google Scholar 

  22. F. Ramırez, I. Tunón, E. Silla, Chem. Phys. 303(1–2), 85–96 (2004)

    CrossRef  Google Scholar 

  23. H. Agarwal, S.V. Kumar, S. Rajeshkumar, Resour. Eff. Technol. 3(4), 406–413 (2017)

    Google Scholar 

  24. N. Padmavathy, R. Vijayaraghavan, Sci. Technol. Adv. Mater. 9(3), 035004 (2008)

    CrossRef  Google Scholar 

  25. Y.H. Leung, C.M.N. Chan, A.M.C. Ng, H.T. Chan, M.W.L. Chiang, A.B. Djurišić, Y.H. Ng, W.Y. Jim, M.Y. Guo, F.C.C. Leung, W.K. Chan, D.T.W. Au, Nanotechnol. 23(47), 475703 (2012)

    Google Scholar 

  26. J. Xue, Z. Luo, P. Li, Y. Ding, Y. Cui, Q. Wu, Sci. Rep. 4, 5408 (2014)

    ADS  CrossRef  Google Scholar 

  27. M. Vaseem, A. Umar, S.H. Kim, Y.-B. Hahn, J. Phys. Chem. C 112(15), 5729–5735 (2008)

    CrossRef  Google Scholar 

  28. K. Simeonidis, S. Mourdikoudis, E. Kaprara, M. Mitrakas, L. Polavarapu, Environ. Sci. Water Res. Technol. 2(1), 43–70 (2016)

    Google Scholar 

  29. L. Tamayo, M. Azócar, M. Kogan, A. Riveros, M. Páez, Mater. Sci. Eng., C 69, 1391–1409 (2016)

    CrossRef  Google Scholar 

  30. S. Roy, P.A. Covert, T.A. Jarisz, C. Chan, D.K. Hore, Anal. Chem. 88(9), 4682–4691 (2016)

    CrossRef  Google Scholar 

  31. E.M. Wong, P.G. Hoertz, C.J. Liang, B.-M. Shi, G.J. Meyer, P. C. Searson. Langmuir 17(26), 8362–8367 (2001)

    CrossRef  Google Scholar 

  32. N. Harrick, Phys. Rev. Lett. 4(5), 224–226 (1960)

    ADS  CrossRef  Google Scholar 

  33. N. Harrick, J. Phys. Chem. 64(9), 1110–1114 (1960)

    CrossRef  Google Scholar 

  34. J. Fahrenfort, Spectrochim. Acta 17(7), 698–709 (1961)

    ADS  CrossRef  Google Scholar 

  35. S. Olsztyńska-Janus, M. Gąsior-Głogowska, K. Szymborska-Małek, B. Czarnik-Matusewicz, M. Komorowska, Specific Applications of Vibrational Spectroscopy in Biomedical Engineering. Biomedical Engineering, Trends, Research and Technologies (Intech Rijeka, 2011), pp. 91–120

    Google Scholar 

  36. J.-M. Andanson, A. Baiker, Chem. Soc. Rev. 39(12), 4571–4584 (2010)

    CrossRef  Google Scholar 

  37. M. Diem, Modern Vibrational Spectroscopy and Micro-spectroscopy: Theory, Instrumentation and Biomedical Applications (Wiley, Chichester, UK, 2015)

    CrossRef  Google Scholar 

  38. M.R. Pereira, J. Yarwood, J. Polym. Sci., Part B: Polym. Phys. 32(11), 1881–1887 (1994)

    ADS  CrossRef  Google Scholar 

  39. K.C. Jena, D.K. Hore, Phys. Chem. Chem. Phys. 12(43), 14383–14404 (2010)

    CrossRef  Google Scholar 

  40. J. Connolly, B. DiBenedetto, R. Donadio, Specifications of Raytran material. Proc. SPIE 181, 141–144 (1979)

    ADS  CrossRef  Google Scholar 

  41. D.J. Segelstein, The complex refractive index of water. M.Sc. thesis, University of Missouri-Kansas City, 1981

    Google Scholar 

  42. S.A. Hall, K.C. Jena, P.A. Covert, S. Roy, T.G. Trudeau, D.K. Hore, J. Phys. Chem. B 118(21), 5617–5636 (2014)

    CrossRef  Google Scholar 

  43. H. Eichler, P. Günter, D. Pohl, Laser-induced dynamic gratings, vol. 50 (Springer, Berlin, 1986)

    CrossRef  Google Scholar 

  44. Q. Du, R. Superfine, E. Freysz, Y. Shen, Phys. Rev. Lett. 70(15), 2313–2316 (1993)

    ADS  CrossRef  Google Scholar 

  45. G. Richmond, Chem. Rev. 102(8), 2693–2724 (2002)

    CrossRef  Google Scholar 

  46. K.C. Jena, P.B. Bisht, Chem. Phys. 314(1), 179–188 (2005)

    CrossRef  Google Scholar 

  47. K.C. Jena, D.K. Hore, J. Phys. Chem. C 113(34), 15364–15372 (2009)

    CrossRef  Google Scholar 

  48. K.C. Jena, P.B. Bisht, M. Shaijumon, S. Ramaprabhu, Opt. Commun. 273(1), 153–158 (2007)

    ADS  CrossRef  Google Scholar 

  49. K.C. Jena, P.A. Covert, D.K. Hore, J. Phys. Chem. Lett. 2(9), 1056–1061 (2011)

    CrossRef  Google Scholar 

  50. B.S. Kalnoor, P.B. Bisht, K.C. Jena, V. Velkannan, P. Bhyrappa, J. Phys. Chem. A 117(34), 8216–8221 (2013)

    CrossRef  Google Scholar 

  51. Y. Chen, K.C. Jena, C. Lütgebaucks, H.I. Okur, S. Roke, Nano Lett. 15(8), 5558–5563 (2015)

    ADS  CrossRef  Google Scholar 

  52. S. Kumar, Elixir Vib. Spec. 39, 4996–4999 (2011)

    Google Scholar 

  53. A. Pawlukojć, J. Leciejewicz, A. Ramirez-Cuesta, J. Nowicka-Scheibe, Spectrochim. Acta A 61(11–12), 2474–2481 (2004)

    ADS  Google Scholar 

  54. V. Min’kov, Y. A. Chesalov, E. Boldyreva, J Struct. Chem. 49(6), 1022–1034 (2008)

    Google Scholar 

  55. D. Punihaole, Z. Hong, R.S. Jakubek, E.M. Dahlburg, S. Geib, S.A. Asher, J. Phys. Chem. B 119(41), 13039–13051 (2015)

    CrossRef  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Department of Physics, Indian Institute of Technology Ropar for SEED Grant and Defence Research and Development Organisation (ERIP/ER/1500487/M/01/1602). DT thanks Dr. Narinder Singh for providing the freshly synthesized metal-oxide nanoparticles which were used for the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailash C. Jena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Tomar, D. et al. (2019). ATR-FTIR Spectroscopy and Its Relevance to Probe the Molecular-Level Interactions Between Amino Acids and Metal-Oxide Nanoparticles at Solid/Aqueous Interface. In: Singh, D., Das, S., Materny, A. (eds) Advances in Spectroscopy: Molecules to Materials. Springer Proceedings in Physics, vol 236. Springer, Singapore. https://doi.org/10.1007/978-981-15-0202-6_1

Download citation