ATR-FTIR Spectroscopy and Its Relevance to Probe the Molecular-Level Interactions Between Amino Acids and Metal-Oxide Nanoparticles at Solid/Aqueous Interface

  • Deepak Tomar
  • Harpreet Kaur
  • Harsharan Kaur
  • Bhawna Rana
  • Krutika Talegaonkar
  • Vivek Maharana
  • Kailash C. JenaEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 236)


Amino acids play an important role in the stabilization process of nanoparticles in aqueous solution. The nano–bio combination received considerable attention in various nanoscale applications such as chemical and biological sensing, imaging, biotechnology, medicines, etc. Considering the importance of the nano–bio mimicking system, in the present study we have focused on the structural behavior and the interaction of three amino acids, namely, L-Leucine, L-Cysteine, and L-Serine in the presence of metal-oxide nanoparticles and its impact on bulk water structure. We have employed attenuated total reflectance Fourier-transform infrared (ATR-FTIR) vibrational spectroscopy to probe the structural signatures of the molecular system in the aqueous solution. From the IR spectral features, it is found that the vibrational signatures of the individual amino acids are very sensitive to the number of molecules present in the aqueous bulk solution. However, there is no change in water structure observed with the variation of the amino acid concentrations. Surprisingly, the combination of oxide nanoparticles and the amino acids has a significant impact on the OH-stretching and bending regions of the bulk water for the case of L-Leucine and L-Cysteine. In presence of oxide nanoparticles, it is observed that there is a significant enhancement in the IR absorption intensity with the appearance of new spectral features of amino acids which was not noticed for the case of amino acids in the pristine aqueous environment. However, there is no enhancement in the intensity observed for the case of L-Serine except the spectral features in the fingerprint region.


ATR-FTIR spectroscopy Amino acids Metal-oxide nanoparticles Nano–Bio mimicking system Bulk water structure 



The authors acknowledge support from the Department of Physics, Indian Institute of Technology Ropar for SEED Grant and Defence Research and Development Organisation (ERIP/ER/1500487/M/01/1602). DT thanks Dr. Narinder Singh for providing the freshly synthesized metal-oxide nanoparticles which were used for the present study.


  1. 1.
    C.-M. Pradier, Y.J. Chabal, Biointerface Characterization by Advanced IR Spectroscopy, 1st edn. (Elsevier, UK, 2011)Google Scholar
  2. 2.
    M. Milosevic, Internal Reflection and ATR Spectroscopy, vol. 262 (Wiley, USA, 2012)CrossRefGoogle Scholar
  3. 3.
    B. Kasemo, Surf. Sci. 500(1), 656–677 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    H. Yang, S. Yang, J. Kong, A. Dong, S. Yu, Nat. Protoc. 10(3), 382–396 (2015)CrossRefGoogle Scholar
  5. 5.
    S. Strazdaite, K. Meister, H.J. Bakker, J. Am. Chem. Soc. 139(10), 3716–3720 (2017)CrossRefGoogle Scholar
  6. 6.
    D. Tomar, S. Chaudhary, K.C. Jena, RSC Adv. 9(22), 12596–12605 (2019)CrossRefGoogle Scholar
  7. 7.
    R.A. Soomro, A. Nafady, N. Memon, T.H. Sherazi, N.H. Kalwar, Talanta 130, 415–422 (2014)CrossRefGoogle Scholar
  8. 8.
    K. Ghanbari, S. Bonyadi, New J. Chem. 42(11), 8512–8523 (2018)CrossRefGoogle Scholar
  9. 9.
    E.A.S. Dimapilis, C.-S. Hsu, R.M.O. Mendoza, M.-C. Lu, Environ. Res. 28(2), 47–56 (2018)Google Scholar
  10. 10.
    Q. Wu, X. Chen, P. Zhang, Y. Han, X. Chen, Y. Yan, S. Li, Cryst. Growth and Des. 8(8), 3010–3018 (2008)CrossRefGoogle Scholar
  11. 11.
    A. El-Trass, H. ElShamy, I. El-Mehasseb, M. El-Kemary, Appl. Surf. Sci. 258(7), 2997–3001 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    A. Gankanda, D.M. Cwiertny, V.H. Grassian, J. Phys. Chem. C 120(34), 19195–19203 (2016)CrossRefGoogle Scholar
  13. 13.
    H. Yin, P.S. Casey, M.J. McCall, M. Fenech, Langmuir 26(19), 15399–15408 (2010)CrossRefGoogle Scholar
  14. 14.
    M. Li, L. Zhu, D. Lin, Environ. Sci. Technol. 45(5), 1977–1983 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    R. Zou, Q. Wang, J. Wu, J. Wu, C. Schmuck, H. Tian, Chem. Soc. Rev. 44(15), 5200–5219 (2015)CrossRefGoogle Scholar
  16. 16.
    Q. Zou, X. Yan, Chem. Eur. J. 24(4), 755–761 (2018)CrossRefGoogle Scholar
  17. 17.
    J.-F. Lambert, Origins Life Evol. Biosph. 8(3), 211–242 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    E.-J. Lim, S.-H. Park, J.-H. Byun, C.-S. Hwang, Bull. Korean Chem. Soc. 33(5), 1741–1747 (2012)CrossRefGoogle Scholar
  19. 19.
    S.P. Schwaminger, P.F. Garcia, G.K. Merck, F.A. Bodensteiner, S. Heissler, S. Günther, S. Berensmeier, J. Phys. Chem. C 119(40), 23032–23041 (2015)CrossRefGoogle Scholar
  20. 20.
    D. Costa, L. Savio, C.-M. Pradier, J. Phys. Chem. B 120(29), 7039–7052 (2016)CrossRefGoogle Scholar
  21. 21.
    T.J. de Konnig, K. Snell, M. Duran, R. Berger, B.-T. Poll-The, R. Surtees, Biochem. J. 371(3), 653–661 (2003)CrossRefGoogle Scholar
  22. 22.
    F. Ramırez, I. Tunón, E. Silla, Chem. Phys. 303(1–2), 85–96 (2004)CrossRefGoogle Scholar
  23. 23.
    H. Agarwal, S.V. Kumar, S. Rajeshkumar, Resour. Eff. Technol. 3(4), 406–413 (2017)Google Scholar
  24. 24.
    N. Padmavathy, R. Vijayaraghavan, Sci. Technol. Adv. Mater. 9(3), 035004 (2008)CrossRefGoogle Scholar
  25. 25.
    Y.H. Leung, C.M.N. Chan, A.M.C. Ng, H.T. Chan, M.W.L. Chiang, A.B. Djurišić, Y.H. Ng, W.Y. Jim, M.Y. Guo, F.C.C. Leung, W.K. Chan, D.T.W. Au, Nanotechnol. 23(47), 475703 (2012)Google Scholar
  26. 26.
    J. Xue, Z. Luo, P. Li, Y. Ding, Y. Cui, Q. Wu, Sci. Rep. 4, 5408 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    M. Vaseem, A. Umar, S.H. Kim, Y.-B. Hahn, J. Phys. Chem. C 112(15), 5729–5735 (2008)CrossRefGoogle Scholar
  28. 28.
    K. Simeonidis, S. Mourdikoudis, E. Kaprara, M. Mitrakas, L. Polavarapu, Environ. Sci. Water Res. Technol. 2(1), 43–70 (2016)Google Scholar
  29. 29.
    L. Tamayo, M. Azócar, M. Kogan, A. Riveros, M. Páez, Mater. Sci. Eng., C 69, 1391–1409 (2016)CrossRefGoogle Scholar
  30. 30.
    S. Roy, P.A. Covert, T.A. Jarisz, C. Chan, D.K. Hore, Anal. Chem. 88(9), 4682–4691 (2016)CrossRefGoogle Scholar
  31. 31.
    E.M. Wong, P.G. Hoertz, C.J. Liang, B.-M. Shi, G.J. Meyer, P. C. Searson. Langmuir 17(26), 8362–8367 (2001)CrossRefGoogle Scholar
  32. 32.
    N. Harrick, Phys. Rev. Lett. 4(5), 224–226 (1960)ADSCrossRefGoogle Scholar
  33. 33.
    N. Harrick, J. Phys. Chem. 64(9), 1110–1114 (1960)CrossRefGoogle Scholar
  34. 34.
    J. Fahrenfort, Spectrochim. Acta 17(7), 698–709 (1961)ADSCrossRefGoogle Scholar
  35. 35.
    S. Olsztyńska-Janus, M. Gąsior-Głogowska, K. Szymborska-Małek, B. Czarnik-Matusewicz, M. Komorowska, Specific Applications of Vibrational Spectroscopy in Biomedical Engineering. Biomedical Engineering, Trends, Research and Technologies (Intech Rijeka, 2011), pp. 91–120Google Scholar
  36. 36.
    J.-M. Andanson, A. Baiker, Chem. Soc. Rev. 39(12), 4571–4584 (2010)CrossRefGoogle Scholar
  37. 37.
    M. Diem, Modern Vibrational Spectroscopy and Micro-spectroscopy: Theory, Instrumentation and Biomedical Applications (Wiley, Chichester, UK, 2015)CrossRefGoogle Scholar
  38. 38.
    M.R. Pereira, J. Yarwood, J. Polym. Sci., Part B: Polym. Phys. 32(11), 1881–1887 (1994)ADSCrossRefGoogle Scholar
  39. 39.
    K.C. Jena, D.K. Hore, Phys. Chem. Chem. Phys. 12(43), 14383–14404 (2010)CrossRefGoogle Scholar
  40. 40.
    J. Connolly, B. DiBenedetto, R. Donadio, Specifications of Raytran material. Proc. SPIE 181, 141–144 (1979)ADSCrossRefGoogle Scholar
  41. 41.
    D.J. Segelstein, The complex refractive index of water. M.Sc. thesis, University of Missouri-Kansas City, 1981Google Scholar
  42. 42.
    S.A. Hall, K.C. Jena, P.A. Covert, S. Roy, T.G. Trudeau, D.K. Hore, J. Phys. Chem. B 118(21), 5617–5636 (2014)CrossRefGoogle Scholar
  43. 43.
    H. Eichler, P. Günter, D. Pohl, Laser-induced dynamic gratings, vol. 50 (Springer, Berlin, 1986)CrossRefGoogle Scholar
  44. 44.
    Q. Du, R. Superfine, E. Freysz, Y. Shen, Phys. Rev. Lett. 70(15), 2313–2316 (1993)ADSCrossRefGoogle Scholar
  45. 45.
    G. Richmond, Chem. Rev. 102(8), 2693–2724 (2002)CrossRefGoogle Scholar
  46. 46.
    K.C. Jena, P.B. Bisht, Chem. Phys. 314(1), 179–188 (2005)CrossRefGoogle Scholar
  47. 47.
    K.C. Jena, D.K. Hore, J. Phys. Chem. C 113(34), 15364–15372 (2009)CrossRefGoogle Scholar
  48. 48.
    K.C. Jena, P.B. Bisht, M. Shaijumon, S. Ramaprabhu, Opt. Commun. 273(1), 153–158 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    K.C. Jena, P.A. Covert, D.K. Hore, J. Phys. Chem. Lett. 2(9), 1056–1061 (2011)CrossRefGoogle Scholar
  50. 50.
    B.S. Kalnoor, P.B. Bisht, K.C. Jena, V. Velkannan, P. Bhyrappa, J. Phys. Chem. A 117(34), 8216–8221 (2013)CrossRefGoogle Scholar
  51. 51.
    Y. Chen, K.C. Jena, C. Lütgebaucks, H.I. Okur, S. Roke, Nano Lett. 15(8), 5558–5563 (2015)ADSCrossRefGoogle Scholar
  52. 52.
    S. Kumar, Elixir Vib. Spec. 39, 4996–4999 (2011)Google Scholar
  53. 53.
    A. Pawlukojć, J. Leciejewicz, A. Ramirez-Cuesta, J. Nowicka-Scheibe, Spectrochim. Acta A 61(11–12), 2474–2481 (2004)ADSGoogle Scholar
  54. 54.
    V. Min’kov, Y. A. Chesalov, E. Boldyreva, J Struct. Chem. 49(6), 1022–1034 (2008)Google Scholar
  55. 55.
    D. Punihaole, Z. Hong, R.S. Jakubek, E.M. Dahlburg, S. Geib, S.A. Asher, J. Phys. Chem. B 119(41), 13039–13051 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Deepak Tomar
    • 1
  • Harpreet Kaur
    • 1
  • Harsharan Kaur
    • 2
  • Bhawna Rana
    • 1
  • Krutika Talegaonkar
    • 2
  • Vivek Maharana
    • 1
  • Kailash C. Jena
    • 1
    • 2
    Email author
  1. 1.Department of PhysicsIndian Institute of Technology RoparRupnagarIndia
  2. 2.Center for Biomedical EngineeringIndian Institute of Technology RoparRupnagarIndia

Personalised recommendations