• Vladimir DanilovEmail author
  • Roman Gaydukov
  • Vadim Kretov
Part of the Heat and Mass Transfer book series (HMT)


In this chapter, a general description of the mathematical model of heat transfer and field emission is presented.


  1. 1.
    Becquerel, A.E.: Mémoire sur les effets électriques produits sous l’influence des rayons solaires. Comptes Rendus 9, 561–567 (1839)Google Scholar
  2. 2.
    Bonch-Bruevich, V.L., Kalashnikov, S.G.: Semiconductor Physics. Nauka, Moscow (1990). (in Russian)Google Scholar
  3. 3.
    Bugaev, S.P., Litvinov, E.A., Mesyats, G.A., Proskurovskii, D.I.: Explosive emission of electrons. Sov. Phys. Uspekhi 18, 51–61 (1975)ADSCrossRefGoogle Scholar
  4. 4.
    Cathey, D.A.: Field-emission displays. Inf. Disp. 16 (1995)Google Scholar
  5. 5.
    Christov, S.G.: General theory of electron emission from metals. Phys. Status Ssolidi (B) 17(1), 11–26 (1966)ADSCrossRefGoogle Scholar
  6. 6.
    Danilov, V.G.: On the relation between the Maslov-Whitham method and the weak asymptotics method. In: Kamiński, A., Oberguggenberger, M., Pilipović, S. (eds.) Linear and Non-Linear Theory of Generalized Functions and its Applications, vol. 88, pp. 55–65. Banach Center Publications, Warsaw (2010)CrossRefGoogle Scholar
  7. 7.
    Danilov, V.G., Omel’yanov, G.A., Radkevich, E.V.: Asymptotic behavior of the solution of a phase field system, and a modified stefan problem. Differ. Equ. 31(3), 446–454 (1995)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Danilov, V.G., Omel’yanov, G.A., Radkevich, E.V.: Hugoniot-type conditions and weak solutions to the phase-field system. Eur. J. Appl. Math. 10, 55–77 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Danilov, V.G., Omel’yanov, G.A., Shelkovich, V.M.: Weak asymptotics method and interaction of nonlinear waves. Am. Math. Soc. Transl.: 2 208, 33–163. Providence: American Mathematical Society (2003)Google Scholar
  10. 10.
    Dyzhev, N.A., Gudkova, S.A., Makhiboroda, M.A., Fedirko V, A.: Investigation of emussion properties of silicon cathodes of different geometry. In: Bykov, D.V. (Ed.) Vacuum science and Technics, Material of XII Scientific-Technical Conference with Participation of Foreign Specialists, pp. 221–224. MIEM, Moscow (2005). (in Russian)Google Scholar
  11. 11.
    Egorov, N., Sheshin, E.: Field Emission Electronics. Springer (2017)Google Scholar
  12. 12.
    Elster, G.: On the electricity of flames. Annalen of Physik und Chemie 3(16), 193–222 (1882)ADSCrossRefGoogle Scholar
  13. 13.
    Elster, G.: On the generation of electricity by the contact of gases and incandescent bodies. Annalen of Physik und Chemie 3(19), 588–624 (1883)ADSCrossRefGoogle Scholar
  14. 14.
    Elster, G.: On the unipolar conductivity of heated gases. Annalen of Physik und Chemie 3(26), 1–9 (1885)ADSCrossRefGoogle Scholar
  15. 15.
    Elster, G.: On the electrification of gases by incandescent bodies. Annalen of Physik und Chemie 3(31), 109–127 (1887)ADSCrossRefGoogle Scholar
  16. 16.
    Elster, G.: On the generation of electricity by contact of rarefied gas with electrically heated wires. Annalen of Physik und Chemie 3(37), 315–329 (1889)ADSCrossRefGoogle Scholar
  17. 17.
    Flügge, S. (ed.): Electron-Emission and Gas Discharges I, Encyclopedia of Physics, vol. XXI. Springer, Berlin (1956)Google Scholar
  18. 18.
    Fowler, R.H., Nordheim, L.: Electron emission in intense electric fields. Proc. Royal Soc. Lond. Ser. A 119(781), 173–181 (1928)ADSCrossRefGoogle Scholar
  19. 19.
    Furcey, G.: Field Emission in Vacuum Microelectronics. Springer (2005)Google Scholar
  20. 20.
    Goldstein, E.: On electric conduction in vacuum. Annalen der Physik und Chemie 3(24), 79–92 (1885)ADSCrossRefGoogle Scholar
  21. 21.
    Grundmann, M.: The Physics of Semiconductors: An Introduction Including Nanophysics and Applications. Springer (2016)Google Scholar
  22. 22.
    Guthrie, F.: On a relation between heat and static electricity. Philos. Mag. 46(306), 257–266 (1873)CrossRefGoogle Scholar
  23. 23.
    Hertz, H.: Ueber einen einfluss des ultravioletten lichtes auf die electrische entladung. Annalen der Physik 267(8), 983–1000 (1887)ADSCrossRefGoogle Scholar
  24. 24.
    Hittorf, W.: On electrical conduction of gases. Annalen of Physik und Chemie 2:136, 1–31, 197–234 (1869)Google Scholar
  25. 25.
    Hittorf, W.: On electrical conduction of gases. Annalen of Physik und Chemie Jubalband 430–445 (1874)Google Scholar
  26. 26.
    Hittorf, W.: On electrical conduction of gases. Annalen of Physik und Chemie 3(7), 553–631 (1879)ADSCrossRefGoogle Scholar
  27. 27.
    Hittorf, W.: On electrical conduction of gases. Annalen of Physik und Chemie 3(20), 705–775 (1883)ADSCrossRefGoogle Scholar
  28. 28.
    Hittorf, W.: On electrical conduction of gases. Annalen of Physik und Chemie 3(21), 90–139 (1884)ADSCrossRefGoogle Scholar
  29. 29.
    Hofmann, P.: Solid State Physics: An Introduction. Wiley (2015)Google Scholar
  30. 30.
    Lee, T.H.: T-f theory of electron emission in high-current arcs. J. Appl. Phys. 30(2), 166–171 (1959)ADSCrossRefGoogle Scholar
  31. 31.
    Mironov, V.L.: Fundamentals of Scanning Probe Microscopy. Institute for Physics of Microstructures RAS, Nizhniy Novgorod (2004)Google Scholar
  32. 32.
    Murphy, E.L., Good, R.H.: Thermionic emission, field emission, and the transition region. Phys. Rev. 102(6), 1464–1473 (1956)ADSCrossRefGoogle Scholar
  33. 33.
    Nottingham, W.B.: Remarks on energy losses attending thermionic emission of electrons from metals. Phys. Rev. (1941)Google Scholar
  34. 34.
    Paulini, J., Klein, T., Simon, G.: Thermo-field emission and the Nottingham effect. J. Phys. D: Appl. Phys. 26(8), 1310–1315 (1993)ADSCrossRefGoogle Scholar
  35. 35.
    Richardson, O.: Thermionic phenomena and the laws which govern them. In: Nobel Lecture, pp. 224–236. Stockholm (1929)Google Scholar
  36. 36.
    Schottky, W.: Über kalte und warme elektronenentladungen. Zeitschrift für Physik 14(1), 63–106 (1923)ADSCrossRefGoogle Scholar
  37. 37.
    Shalimova, K.V.: Physics of Semiconductors. Energoatomizdat, Moscow (1985). (in Russian)Google Scholar
  38. 38.
    Smith, R.T.: Electronics developments for field-emission displays. Inf. Display 14(2), 12 (1998)MathSciNetGoogle Scholar
  39. 39.
    Smith, W.: Effect of light on selenium during the passage of an electric current. Nature 7(173), 303 (1873)CrossRefGoogle Scholar
  40. 40.
    Stilbans, L.S.: Physics Semiconductors. Soviet Radio, Moscow (1967). (in Russian)Google Scholar
  41. 41.
    Stoletow, A.: Suite des recherches actino-electriques. Comptes Rendus CVII 91 (1888)Google Scholar
  42. 42.
    Stoletow, A.: Sur les courants actino-electriqies au travers detair. Comptes Rendus CVI 1593 (1888)Google Scholar
  43. 43.
    Stoletow, A.: Sur une sorte de courants electriques provoques par les rayons ultraviolets. Comptes Rendus CVI 1149 (1888)Google Scholar
  44. 44.
    Stratton, R.: Theory of field emission from semiconductors. Phys. Rev. 125(1), 67–82 (1962)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Vladimir Danilov
    • 1
    Email author
  • Roman Gaydukov
    • 1
  • Vadim Kretov
    • 1
  1. 1.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations