Skip to main content

Control Strategies Applied in Solar-Powered Water Pumping System—A Review

  • Conference paper
  • First Online:
Soft Computing for Problem Solving

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1057))

Abstract

Agriculture is a well-versed procedure adapted in many farms of our world which helps to increase the crop yields and its diversification. Moreover, these practices include the use of conventional electric motors and generators. In advance to that solar PV-based water pumping system (SWP) came into practice which offers fabulous solutions compared to other conventional systems as it needs lesser maintenance, ease for installation, free of fuel cost, zero emanation of greenhouse gases, portable and most important reliable too. Henceforth, it greatly motivated the researchers to design a more efficient and controlled system. This manuscript takes an initiative work to represent SWP system control strategies wherein the details of input source PV, boosting PV voltage by various converters, charge controllers, and also energy management by supervisory controllers for SWP system are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. India Solar Water Pumping System Market (2017–2022). http://www.6wresearch.com/market-reports/india-solar-water-pumping-system-swp-market-2017-2022-market-forecast-by-power+rating-competitive+landscape-design_type-surface+submersible

  2. Al-Smairan, M.: Application of photovoltaic array for pumping water as an alternative to diesel engines in Jordan Badia, Tall Hassan station: case study. Renew. Sustain. Energy Rev. 16(7), 4500–4507 (2012)

    Article  Google Scholar 

  3. Elhadidy, M.A., Shaahid, S.M.: Parametric study of hybrid (wind + solar + diesel) power generating systems. Renew. Energy 21(2), 129–139 (2000)

    Article  Google Scholar 

  4. Martiré, T., Glaize, C., Joubert, C., Rouvière, B.: A simplified but accurate prevision method for along the sun PV pumping systems. Sol. Energy 82(11), 1009–1020 (2008)

    Article  Google Scholar 

  5. Jordehi, A.R.: Maximum power point tracking in photovoltaic (PV) systems: a review of different approaches. Renew. Sustain. Energy Rev. 30(65), 1127–1138 (2016)

    Article  Google Scholar 

  6. Ramli, M.A., Twaha, S., Ishaque, K., Al-Turki, Y.A.: A review on maximum power point tracking for photovoltaic systems with and without shading conditions. Renew. Sustain. Energy Rev. 31(67), 144–159 (2017)

    Article  Google Scholar 

  7. Aliyu, M., Hassan, G., Said, S.A., Siddiqui, M.U., Alawami, A.T., Elamin, I.M.: A review of solar-powered water pumping systems. Renew. Sustain. Energy Rev. 87, 61–76 (2018)

    Article  Google Scholar 

  8. Sontake, V.C., Kalamkar, V.R.: Solar photovoltaic water pumping system—a comprehensive review. Renew. Sustain. Energy Rev. 30(59), 1038–1067 (2016)

    Article  Google Scholar 

  9. Solar Water Pumping. http://www.sunelco.com/planning_pumping.html

  10. Ashiquzzaman, M., Afroze, N., Hossain, M.J., Zobayer, U., Hossain, M.M.: Cost effective solar charge controller using microcontroller. Can. J. Electr. Electron. Eng. 2(12), 571–576 (2011)

    Google Scholar 

  11. Hiwale, S., Patil, M.V., Vinchurkar, H.: An efficient MPPT solar charge controller. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 3(7) (2014)

    Google Scholar 

  12. Mohapatra, A., Nayak, B., Das, P., Mohanty, K.B.: A review on MPPT techniques of PV system under partial shading condition. Renew. Sustain. Energy Rev. 80, 854–867 (2017)

    Article  Google Scholar 

  13. Subudhi, B., Pradhan, R.: A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Trans. Sustain. Energy 4(1), 89–98 (2013)

    Article  Google Scholar 

  14. Soulatiantork, P., Cristaldi, L., Faifer, M., Laurano, C., Ottoboni, R., Toscani, S.: A tool for performance evaluation of MPPT algorithms for photovoltaic systems. Measurement 128, 537–544 (2018)

    Article  Google Scholar 

  15. Logeswaran, T., SenthilKumar, A.: A review of maximum power point tracking algorithms for photovoltaic systems under uniform and non-uniform irradiances. Energy Procedia 1(54), 228–235 (2014)

    Article  Google Scholar 

  16. Hohm, D.P., Ropp, M.E.: Comparative study of maximum power point tracking algorithms using an experimental, programmable, maximum power point tracking test bed. In: Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE 2000, pp. 1699–1702. IEEE

    Google Scholar 

  17. Yahyaoui, I., Nafaa, J., Charfi, S., Chaabene, M., Tadeo, F.: MPPT techniques for a photovoltaic pumping system. In: Renewable Energy Congress (IREC), 2015 6th International, 24 Mar 2015, pp. 1–6. IEEE

    Google Scholar 

  18. Garraoui, R., Sbita, L., Hamed, M.B.: MPPT controller for a photovoltaic power system based on fuzzy logic. In: 2013 10th International Multi-conference on Systems, Signals & Devices (SSD), 18 Mar 2013, pp. 1–6. IEEE

    Google Scholar 

  19. El Telbany, M.E., Youssef, A., Zekry, A.A.: Intelligent techniques for MPPT control in photovoltaic systems: a comprehensive review. In: 2014 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology (ICAIET), 3 Dec 2014, pp. 17–22. IEEE

    Google Scholar 

  20. Zainuri, M.A., Radzi, M.A., Soh, A.C., Rahim, N.A.: Development of adaptive perturb and observe-fuzzy control maximum power point tracking for photovoltaic boost dc–dc converter. IET Renew. Power Gener. 8(2), 183–194 (2013)

    Article  Google Scholar 

  21. Dzung, P.Q., Lee, H.H., Vu, N.T.: The new MPPT algorithm using ANN-based PV. In: 2010 International Forum on Strategic Technology (IFOST), 13 Oct 2010, pp. 402–407. IEEE

    Google Scholar 

  22. Mellit, A., Kalogirou, S.A.: Artificial intelligence techniques for photovoltaic applications: a review. Prog. Energy Combust. Sci. 34, 574–632 (2008)

    Article  Google Scholar 

  23. Arunkumari, T., Indragandhi, V.: An overview of high voltage conversion ratio DC–DC converter configurations used in DC micro-grid architectures. Renew. Sustain. Energy Rev. 30(77), 670–687 (2017)

    Article  Google Scholar 

  24. Coelho, R.F., dos Santos, W.M., Martins, D.C.: Influence of power converters on PV maximum power point tracking efficiency. In: 2012 10th IEEE/IAS International Conference on Industry Applications (INDUSCON), 5 Nov 2012, pp. 1–8. IEEE

    Google Scholar 

  25. El Khateb, A.H., Rahim, N.A., Selvaraj, J., Williams, B.W.: DC-to-DC converter with low input current ripple for maximum photovoltaic power extraction. IEEE Trans. Ind. Electron. 62(4), 2246–2256 (2015)

    Article  Google Scholar 

  26. Caracas, J.V., Farias, G.D., Teixeira, L.F., Ribeiro, L.A.: Implementation of a high-efficiency, high-lifetime, and low-cost converter for an autonomous photovoltaic water pumping system. IEEE Trans. Ind. Appl. 50(1), 631–641 (2014)

    Article  Google Scholar 

  27. Kumar, R., Singh, B.: BLDC motor driven water pump fed by solar photovoltaic array using boost converter. In: India Conference (INDICON), 2015 Annual IEEE, 17 Dec 2015, pp. 1–6. IEEE

    Google Scholar 

  28. Khadmun, W., Subsingha, W.: High voltage gain interleaved dc boost converter application for photovoltaic generation system. Energy Procedia 1(34), 390–398 (2013)

    Article  Google Scholar 

  29. Singh, B., Bist, V.: A BL-CSC converter-fed BLDC motor drive with power factor correction. IEEE Trans. Ind. Electron. 62(1), 172–183 (2015)

    Article  Google Scholar 

  30. Parackal, R., Koshy, R.A.: PV powered zeta converter fed BLDC drive. In: 2014 Annual International Conference on Emerging Research Areas: Magnetics, Machines and Drives (AICERA/iCMMD), 24 Jul 2014, pp. 1–5. IEEE

    Google Scholar 

  31. Mohan, N., Undeland, T.M.: Power Electronics: Converters, Applications, and Design. Wiley (2007)

    Google Scholar 

  32. Singh, B., Kumar, R.: Solar photovoltaic array fed water pump driven by brushless DC motor using Landsman converter. IET Renew. Power Gener. 10(4), 474–484 (2016)

    Article  Google Scholar 

  33. Kumar, R., Singh, B.: Solar photovoltaic array fed Luo converter-based BLDC motor driven water pumping system. In: 2014 9th International Conference on Industrial and Information Systems (ICIIS), 15 Dec 2014, pp. 1–5. IEEE

    Google Scholar 

  34. Singh, B., Bist, V.: Solar PV array fed water pumping system using SEPIC converter based BLDC motor drive. IEEE Trans. Ind. Appl. 51(2) (2015)

    Google Scholar 

  35. Khoucha, F., Benrabah, A., Herizi, O., Kheloui, A., Benbouzid, M.H.: An improved MPPT interleaved boost converter for solar electric vehicle application. In: 2013 Fourth International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), 13 May 2013, pp. 1076–1081. IEEE

    Google Scholar 

  36. Kumar, R., Singh, B.: Buck-boost converter fed BLDC motor drive for solar PV array based water pumping. In: IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES) (2014)

    Google Scholar 

  37. Kumar, R., Singh, B., Chandra, A., Al-Haddad, K.: Solar PV array fed water pumping using BLDC motor drive with boost-buck converter. In: Energy Conversion Congress and Exposition (ECCE), 2015 IEEE, 20 Sep 2015, pp. 5741–5748. IEEE

    Google Scholar 

  38. Poompavai, T., Priya, P.V.: Comparative analysis of modified multilevel DC link inverter with conventional cascaded multilevel inverter fed induction motor drive. Energy Procedia 117, 336–344 (2017)

    Article  Google Scholar 

  39. Achaibou, N., Haddadi, M., Malek, A.: Modeling of lead acid batteries in PV systems. Energy Procedia 1(18), 538–544 (2012)

    Article  Google Scholar 

  40. Rahrah, K., Rekioua, D., Rekioua, T., Bacha, S.: Photovoltaic pumping system in Bejaia climate 786 with battery storage. Int. J. Hydrogen Energy 40(39), 13665–13675 (2015)

    Article  Google Scholar 

  41. Bhattacharjee, A., Mandal, D.K., Saha, H.: Design of an optimized battery energy storage enabled solar PV pump for rural irrigation. In: IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 4 Jul 2016, pp. 1–6. IEEE

    Google Scholar 

  42. Ingole, J.N., Choudhary, M.A., Kanphade, R.D.: PIC based solar charging controller for battery. Int. J. Eng. Sci. Technol. (IJEST) 4(02), 384–390 (2012)

    Google Scholar 

  43. Arias, N.B., Franco, J.F., Lavorato, M., Romero, R.: Metaheuristic optimization algorithms for the optimal coordination of plug-in electric vehicle charging in distribution systems with distributed generation. Electr. Power Syst. Res. 31(142), 351–361 (2017)

    Article  Google Scholar 

  44. Dakkak, M., Hasan, A.: A charge controller based on microcontroller in stand-alone 799 photovoltaic systems. Energy Procedia 1(19), 87–90 (2012)

    Article  Google Scholar 

  45. Chang, W.Y.: The state of charge estimating methods for battery: a review. ISRN Appl. Math. 23, 2013 (2013)

    Google Scholar 

  46. Khiareddine, A., Salah, C.B., Mimouni, M.F.: Power management of a photovoltaic/battery pumping system in agricultural experiment station. Sol. Energy 28(112), 319–338 (2015)

    Article  Google Scholar 

  47. Khiareddine, A., Salah, C.B., Mimouni, M.F.: Strategy of energy control in PVP/battery water pumping system. In: 2014 International Conference on Green Energy, 25 Mar 2014, pp. 49–54. IEEE

    Google Scholar 

  48. Khiareddine, A., Salah, C.B., Mimouni, M.F.: Determination of the target speed corresponding to the optimum functioning of a photovoltaic system pumping and regulation of the water level. In: 2013 International Conference on Electrical Engineering and Software Applications (ICEESA), 21 Mar 2013, pp. 1–5. IEEE

    Google Scholar 

  49. Serir, C., Rekioua, D., Mezzai, N., Bacha, S.: Supervisor control and optimization of multi-sources pumping system with battery storage. Int. J. Hydrogen Energy 41(45), 20974–20986 (2016)

    Article  Google Scholar 

  50. Ouachani, I., Rabhi, A., Yahyaoui, I., Tidhaf, B., Tadeo, T.F.: Renewable energy management algorithm for a water pumping system. Energy Procedia 31(111), 1030–1039 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kowsalya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Poompavai, T., Kowsalya, M. (2020). Control Strategies Applied in Solar-Powered Water Pumping System—A Review. In: Das, K., Bansal, J., Deep, K., Nagar, A., Pathipooranam, P., Naidu, R. (eds) Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 1057. Springer, Singapore. https://doi.org/10.1007/978-981-15-0184-5_48

Download citation

Publish with us

Policies and ethics