Skip to main content

Characterization of Top Hub Genes in Breast and Lung Cancer Using Functional Association

  • Conference paper
  • First Online:
Book cover Soft Computing for Problem Solving

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1057))

  • 1014 Accesses

Abstract

Identification of disease gene in cancer is a complex problem, not due to the lack of methods, but because of the lack of standard validation procedure for identified genes. This issue is addressed in this paper, where we first select disease markers from both microarray and RNA-seq gene expression data of breast and lung cancer, and then validate the obtained gene set by the method of functional similarity with the known cancer genes. The classification procedure using kernel support vector machine (KSVM) is applied to find functional similarity of the hub genes from the protein–protein-interaction (PPI) network of identified genes, and a set of top genes of interest is extracted. We then construct a common cancer network and observe its functional characteristics in cancer. The results highlight the enrichment of this network in important cancer pathways, and thus validate the association of the identified gene set with the disease. It is anticipated that including more cancer types in the experimentation may help validate the drug targets, particularly common to these cancer types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M., et al.: NCBI GEO: archive for functional genomics data sets update. Nucleic Acids Res. 41(D1), D991–D995 (2012)

    Article  Google Scholar 

  2. Carson, M.B., Gu, J., Yu, G., Lu, H.: Identification of cancer-related genes and motifs in the human gene regulatory network. IET Syst. Biol. 9(4), 128–134 (2015)

    Article  Google Scholar 

  3. Chen, D., Yang, H.: Integrated analysis of differentially expressed genes in breast cancer pathogenesis. Oncol. Lett. 9(6), 2560–2566 (2015)

    Article  Google Scholar 

  4. Fumagalli, D., Blanchet-Cohen, A., Brown, D., Desmedt, C., Gacquer, D., Michiels, S., Rothé, F., Majjaj, S., Salgado, R., Larsimont, D., et al.: Transfer of clinically relevant gene expression signatures in breast cancer: from affymetrix microarray to illumina RNA-sequencing technology. BMC Genomics 15(1), 1008 (2014)

    Article  Google Scholar 

  5. Gruosso, T., Mieulet, V., Cardon, M., Bourachot, B., Kieffer, Y., Devun, F., Dubois, T., Dutreix, M., Vincent-Salomon, A., Miller, K.M., et al.: Chronic oxidative stress promotes H2AX protein degradation and enhances chemosensitivity in breast cancer patients. EMBO Mol. Med. 8(5), 527–549 (2016)

    Article  Google Scholar 

  6. Huang, Y., Tao, Y., Li, X., Chang, S., Jiang, B., Li, F., Wang, Z.M.: Bioinformatics analysis of key genes and latent pathway interactions based on the anaplastic thyroid carcinoma gene expression profile. Oncol. Lett. 13(1), 167–176 (2017)

    Article  Google Scholar 

  7. Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U., Speed, T.P.: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2), 249–264 (2003)

    Article  Google Scholar 

  8. Jeanmougin, M., De Reynies, A., Marisa, L., Paccard, C., Nuel, G., Guedj, M.: Should we abandon the t-test in the analysis of gene expression microarray data: a comparison of variance modeling strategies. PLoS ONE 5(9), e12336 (2010)

    Article  Google Scholar 

  9. Jung, D., Ge, X.: PPInfer: a bioconductor package for inferring functionally related proteins using protein interaction networks. F1000Research 6 (2018)

    Article  Google Scholar 

  10. Landi, M.T., Dracheva, T., Rotunno, M., Figueroa, J.D., Liu, H., Dasgupta, A., Mann, F.E., Fukuoka, J., Hames, M., Bergen, A.W., et al.: Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival. PLoS ONE 3(2), e1651 (2008)

    Article  Google Scholar 

  11. Li, J., Hou, R., Niu, X., Liu, R., Wang, Q., Wang, C., Li, X., Hao, Z., Yin, G., Zhang, K.: Comparison of microarray and RNA-seq analysis of mRNA expression in dermal mesenchymal stem cells. Biotechnol. Lett. 38(1), 33–41 (2016)

    Article  Google Scholar 

  12. Li, T., Huang, H., Liao, D., Ling, H., Su, B., Cai, M.: Genetic polymorphism in HLA-G \(3^{\prime }\) UTR 14-bp ins/del and risk of cancer: a meta-analysis of case-control study. Mol. Genet. Genomics 290(4), 1235–1245 (2015)

    Article  Google Scholar 

  13. Lu, T.P., Tsai, M.H., Lee, J.M., Hsu, C.P., Chen, P.C., Lin, C.W., Shih, J.Y., Yang, P.C., Hsiao, C.K., Lai, L.C., et al.: Identification of a novel biomarker, SEMA5A, for non-small cell lung carcinoma in nonsmoking women. Cancer Epidemiol. Prev. Biomarkers 19(10), 2590–2597 (2010)

    Article  Google Scholar 

  14. Makhijani, R.K., Raut, S.A., Purohit, H.J.: Fold change based approach for identification of significant network markers in breast, lung and prostate cancer. IET Syst. Biol. (2018)

    Google Scholar 

  15. Makhijani, R.K., Raut, S.A., Purohit, H.J.: Identification of common key genes in breast, lung and prostate cancer and exploration of their heterogeneous expression. Oncol. Lett. 15(2), 1680–1690 (2018)

    Google Scholar 

  16. Nookaew, I., Papini, M., Pornputtapong, N., Scalcinati, G., Fagerberg, L., Uhlén, M., Nielsen, J.: A comprehensive comparison of RNA-seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Res. 40(20), 10084–10097 (2012)

    Article  Google Scholar 

  17. Planche, A., Bacac, M., Provero, P., Fusco, C., Delorenzi, M., Stehle, J.C., Stamenkovic, I.: Identification of prognostic molecular features in the reactive stroma of human breast and prostate cancer. PLoS ONE 6(5), e18640 (2011)

    Article  Google Scholar 

  18. Rahman, M., Jackson, L.K., Johnson, W.E., Li, D.Y., Bild, A.H., Piccolo, S.R.: Alternative preprocessing of rna-sequencing data in the cancer genome atlas leads to improved analysis results. Bioinformatics 31(22), 3666–3672 (2015)

    Article  Google Scholar 

  19. Rapaport, F., Khanin, R., Liang, Y., Pirun, M., Krek, A., Zumbo, P., Mason, C.E., Socci, N.D., Betel, D.: Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol. 14(9), 3158 (2013)

    Article  Google Scholar 

  20. Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., Smyth, G.K.: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43(7), e47–e47 (2015)

    Article  Google Scholar 

  21. Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K.P., et al.: STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43(D1), D447–D452 (2014)

    Article  Google Scholar 

  22. Timmerman, L.A., Holton, T., Yuneva, M., Louie, R.J., Padró, M., Daemen, A., Hu, M., Chan, D.A., Ethier, S.P., vant Veer, L.J., et al.: Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell 24(4), 450–465 (2013)

    Article  Google Scholar 

  23. Wang, Z., Arat, S., Magid-Slav, M., Brown, J.R.: Meta-analysis of human gene expression in response to Mycobacterium tuberculosis infection reveals potential therapeutic targets. BMC Syst. Biol. 12(1), 3 (2018)

    Article  Google Scholar 

  24. Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R.M., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., Stuart, J.M., Network, C.G.A.R., et al.: The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45(10), 1113 (2013)

    Article  Google Scholar 

  25. Wu, H., Dong, J., Wei, J.: Network-based method for detecting dysregulated pathways in glioblastoma cancer. IET Syst. Biol. 12(1), 39–44 (2018)

    Article  Google Scholar 

  26. Zhao, S., Fung-Leung, W.P., Bittner, A., Ngo, K., Liu, X.: Comparison of RNA-seq and microarray in transcriptome profiling of activated T cells. PLoS ONE 9(1), e78644 (2014)

    Article  Google Scholar 

  27. Zhao, Y., Fu, D., Xu, C., Yang, J., Wang, Z.: Identification of genes associated with tongue cancer in patients with a history of tobacco and/or alcohol use. Oncol. Lett. 13(2), 629–638 (2017)

    Article  Google Scholar 

  28. Zheng, S., Zheng, D., Dong, C., Jiang, J., Xie, J., Sun, Y., Chen, H.: Development of a novel prognostic signature of long non-coding RNAs in lung adenocarcinoma. J. Cancer Res. Clin. Oncol. 143(9), 1649–1657 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Hemant Purohit, Engineering Genomics Division, CSIR-National Environmental Engineering Research Institute [Nagpur (MS), India] for his incessant support and motivation during the course of this research. We also thank Dr Dhananjay V. Raje for valuable guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richa K. Makhijani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Makhijani, R.K., Raut, S.A. (2020). Characterization of Top Hub Genes in Breast and Lung Cancer Using Functional Association. In: Das, K., Bansal, J., Deep, K., Nagar, A., Pathipooranam, P., Naidu, R. (eds) Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 1057. Springer, Singapore. https://doi.org/10.1007/978-981-15-0184-5_42

Download citation

Publish with us

Policies and ethics