Abstract
Location sensing moving objects generate a continuous stream of spatio-temporal data. Querying and analysis of this data can give more inference on the mobility patterns of the objects. In this paper, we are proposing a method for evaluating spatio-temporal aggregate queries. For the effective processing of queries continuous clustering is employed on moving objects. The frequency of clustering is determined by the semantic properties of the travel network. Moving objects and queries are combined together and processed incrementally all through the travel network. The cluster membership of an object may change during the course of the journey. By analyzing this, the pattern of the movement of object can be ascertained. Special data structures are maintained to keep track clusters to answer spatio-temporal aggregate queries. We prove that our system can deliver answers to spatio-temporal aggregate queries effectively without processing the entire records of the moving objects.
Keywords
- Location based systems
- Moving objects
- Semantic data processing
- Spatio-temporal data mining
- Spatio-temporal aggregate queries
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Alvares, L.O., Bogorny, V., Kuijpers, B., de Macedo, J.A.F., Moelans, B., Vaisman, A.: A model for enriching trajectories with semantic geographical information. In: Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems, p. 22. ACM (2007)
Chen, J., Lai, C., Meng, X., Xu, J., Hu, H.: Clustering moving objects in spatial networks. In: Kotagiri, R., Krishna, P.R., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 611–623. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71703-4_52
Gryllakis, F., Pelekis, N., Doulkeridis, C., Sideridis, S., Theodoridis, Y.: Searching for spatio-temporal-keyword patterns in semantic trajectories. In: Adams, N., Tucker, A., Weston, D. (eds.) IDA 2017. LNCS, vol. 10584, pp. 112–124. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68765-0_10
Jensen, C.S., Lin, D., Ooi, B.C.: Continuous clustering of moving objects. IEEE Trans. Knowl. Data Eng. 19(9), 1161–1174 (2007)
Li, Y., Han, J., Yang, J.: Clustering moving objects. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 617–622. ACM (2004)
Li, Z., Lee, J.-G., Li, X., Han, J.: Incremental clustering for trajectories. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5982, pp. 32–46. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12098-5_3
Nehme, R.V., Rundensteiner, E.A.: SCUBA: scalable cluster-based algorithm for evaluating continuous spatio-temporal queries on moving objects. In: Ioannidis, Y., et al. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 1001–1019. Springer, Heidelberg (2006). https://doi.org/10.1007/11687238_58
Nishad, A., Abraham, S.: Semantic trajectory analysis for identifying locations of interest of moving objects. In: 2017 International Conference on Networks & Advances in Computational Technologies (NetACT), pp. 257–261. IEEE (2017)
Niyizamwiyitira, C., Lundberg, L.: Performance evaluation of trajectory queries on multiprocessor and cluster. Comput. Sci. Inf. Technol. Vienna Austria 6, 145–163 (2016)
Portugal, I., Alencar, P., Cowan, D.: Developing a spatial-temporal contextual and semantic trajectory clustering framework. arXiv preprint arXiv:1712.03900 (2017)
Xu, J., Lu, H., Güting, R.H.: Range queries on multi-attribute trajectories. IEEE Trans. Knowl. Data Eng. 30(6), 1206–1211 (2018)
Young, S., Arel, I., Karnowski, T.P., Rose, D.: A fast and stable incremental clustering algorithm. In: 2010 Seventh International Conference on Information Technology: New Generations, pp. 204–209. IEEE (2010)
Yu, Y., Wang, Q., Wang, X., Wang, H., He, J., et al.: Online clustering for trajectory data stream of moving objects. Comput. Sci. Inf. Syst. 10(3), 1293–1317 (2013)
Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical world. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 316–324. ACM (2011)
Yuan, J., et al.: T-drive: driving directions based on Taxi trajectories. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 99–108. ACM (2010)
Zheng, B., Yuan, N.J., Zheng, K., Xie, X., Sadiq, S., Zhou, X.: Approximate keyword search in semantic trajectory database. In: 2015 IEEE 31st International Conference on Data Engineering, pp. 975–986. IEEE (2015)
Zhou, P., Zhang, D., Salzberg, B., Cooperman, G., Kollios, G.: Close pair queries in moving object databases. In: Proceedings of the 13th Annual ACM International Workshop on Geographic Information Systems, pp. 2–11. ACM (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Nishad, A., Abraham, S. (2019). A Method for Continuous Clustering and Querying of Moving Objects. In: Luhach, A., Jat, D., Hawari, K., Gao, XZ., Lingras, P. (eds) Advanced Informatics for Computing Research. ICAICR 2019. Communications in Computer and Information Science, vol 1075. Springer, Singapore. https://doi.org/10.1007/978-981-15-0108-1_17
Download citation
DOI: https://doi.org/10.1007/978-981-15-0108-1_17
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-0107-4
Online ISBN: 978-981-15-0108-1
eBook Packages: Computer ScienceComputer Science (R0)