Skip to main content

Efficient Visualization of Scattered Energy Distribution Data by Using Cubic Timmer Triangular Patches

  • Chapter
  • First Online:
Energy Efficiency in Mobility Systems

Abstract

This chapter discusses the application of the new cubic Timmer triangular patches constructed by Ali et al. [1] to interpolate the irregularly scattered data with C1 continuity. In order to apply the cubic Timmer triangular patches for scattered data interpolation, the data is first triangulated by using the Delaunay algorithm, and then the sufficient condition for C1 continuity is derived along the adjacent triangles. Two methods are used to calculate the cubic Timmer ordinates on each triangle. The convex combination between three local schemes Ti, i  = 1, 2, 3 is used to produce the C1 surface everywhere. The proposed scheme will be tested to visualize three types of energy data sets with irregular shape properties. Numerical and graphical results are presented using MATLAB. Comparisons of the proposed scheme with some existing procedures such as cubic Ball and cubic Bézier triangular patches are also carried out. The resulting surface produced by cubic Timmer triangular patch is better than that produced using cubic Ball and cubic Bezier triangular patches with an overall coefficient of determination R2 value obtained to be larger than 0.8359.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.A.M. Ali, S.A.A. Karim, S.C. Dass, V. Skala, A. Saaban, M.K. Hasan, H. Ishak, New cubic Timmer triangular patches with C1 and G1 continuity. Submitted to Jurnal Teknologi (2019)

    Google Scholar 

  2. G. Farin, A history of curves and surfaces, in Handbook of Computer Aided Geometric Design, vol. 1 (2002)

    Google Scholar 

  3. B.H. Ong, H.C. Wong. C1 positivity preserving scattered data interpolation scheme, in Proceedings of Advanced Topics in Multivariate Approximation, ed. by F. Fontanella, K. Jetter, P.J. Laurent (World Scientific Publishing Company, Singapore, 1996), pp. 259–274

    Google Scholar 

  4. A.A. Ball, CONSURF. Part one: introduction of the conic lofting tile. Comput. Aided Des. 6(4), 243–249 (1974)

    Article  Google Scholar 

  5. N. Ramli, J.M. Ali. Object design using blending of rational Timmer. In AIP Conference Proceedings, vol. 1605, No. 1 (AIP, 2014), pp. 262–267

    Google Scholar 

  6. I. Amidor, Scattered data interpolation methods for electronic imaging systems: a survey. J. Electron. Imaging 11(2), 157–176 (2002)

    Article  Google Scholar 

  7. N. Awang, R.W. Rahmat. Reconstruction of smooth surface by using cubic Bezier triangular patch in GUI. Malaysian J. Ind. Technol. 2(1) 2017

    Google Scholar 

  8. N. Awang, R.W. Rahmat, P.S. Sulaiman, A. Jaafar, Delaunay Triangulation of a missing points. J. Adv. Sci. Eng. 7(1), 58–69 (2017)

    Google Scholar 

  9. R.K. Beatson, Z. Ziegler, Monotonicity preserving surface interpolation. SIAM J. Numer. Anal. 22(2), 401–411 (1985)

    Article  MathSciNet  Google Scholar 

  10. G. Beliakov, Monotonicity preserving approximation of multivariate scattered data. BIT 45(4), 653–677 (2005)

    Article  MathSciNet  Google Scholar 

  11. S.L. Borne, M. Wende. Domain decompsoition methods in scattered data interpolation with conditionaly positive definite radial basis functions. Comput. Math. Appl. (in press, 2018)

    Google Scholar 

  12. C. Bracco, C. Gianelli, A. Sestini, Adaptive scattered data fitting by extension of local approximations to hierachical splines. Comput. Aided Geometr. Des. 52–53, 90–105 (2017)

    Article  Google Scholar 

  13. K. Brodlie, P. Mashwama, S. Butt, Visualization of surface data to preserve positivity and other simple constraints. Comput. Gr. 19(4), 585–594 (1995)

    Article  Google Scholar 

  14. S. Butt, K.W. Brodlie, Preserving positivity using piecewise cubic interpolation. Comput. Gr. 17(1), 55–64 (1993)

    Article  Google Scholar 

  15. E.S. Chan, B.H. Ong, Range restricted scattered data interpolation using convex combination of cubic Bézier triangles. J. Comput. Appl. Math. 136(1–2), 135–147 (2001)

    Article  MathSciNet  Google Scholar 

  16. E.S. Chan, V.P. Kong, B.H. Ong. Constrained C1 interpolation on rectangular grids, in Proceedings of the International Conference on Computer Graphics, Imaging and Visualization (CGIV’04), July 26–29, Penang, Malaysia (2004), pp. 239–244

    Google Scholar 

  17. L.H.T. Chang, H.B. Said, A triangular patch for the interpolation of functional scattered data. Comput. Aided Des. 29(6), 407–412 (1997)

    Article  Google Scholar 

  18. Z. Chen, F. Cao, Scattered data approximation by neural networks operators. Neurocomputing 190, 237–242 (2016)

    Article  Google Scholar 

  19. V. Cheutet, M. Daniel, S. Hahmann, R.L. Greca, J.C. Léon, R. Maculet, B. Sauvage, Constraint modeling for curves and surfaces in CAGD: a survey. Int. J. Shape Model. 13(02), 159–199 (2007)

    Article  MathSciNet  Google Scholar 

  20. H.S. Chua, V.P. Kong. Constrained C1 scattered data interpolation using rational blend, in AIP Conference Proceedings, vol. 1605, No. 1 (2014), pp. 280–285

    Google Scholar 

  21. M.S.L. Dodd, J.A. Roulier, Shape Preserving Spline Interpolation for specifying Bivariate Functions of Grids. IEEE Comput. Gr. Appl. 3(6), 70–79 (1983)

    Article  Google Scholar 

  22. R. Feng, Y. Zhang. Piecewise Bivariate Hermite Interpolations for large sets of scattered data. J. Appl. Math. 10, Article ID 239703 (2013)

    Google Scholar 

  23. T.A. Foley, K. Opitz. Hybrid cubic Bézier triangle patches, in Mathematical Methods in Computer Aided Geometric Design II, ed. by T. Lyche, L.L. Schumaker (Academic Press, 1992), pp. 275–286

    Google Scholar 

  24. R. Franke, G.M. Nielson, Scattered data interpolation of large Sets of scattered data. Intl. J. Numer. Methods Eng. 15, 1691–1704 (1980)

    Article  Google Scholar 

  25. A. Gilat. MATLAB: An Introduction with Applications (Wiley, Hoboken, 2009)

    Google Scholar 

  26. R. Gobithasan, J.M. Ali, Towards C2 curve design with Timmer parametric cubic, in Proceedings. International Conference on Computer Graphics, Imaging and Visualization, 2004. CGIV 2004 (IEEE, 2004), pp. 109–114

    Google Scholar 

  27. T.N. Goodman, H.B. Said, Shape preserving properties of the generalised Ball basis. Comput. Aided Geometr. Des. 8(2), 115–121 (1991)

    Article  MathSciNet  Google Scholar 

  28. T.N.T. Goodman, H.B. Said, L.H.T. Chang, Local derivative estimation for scattered data interpolation. Appl. Math. Comput. 68(1), 41–50 (1995)

    MathSciNet  MATH  Google Scholar 

  29. L. Han, L.L. Schumaker, Fitting monotone surfaces to scattered data using C1 piecewise cubics. SIAM J. Numer. Anal. 34(1), 569–585 (1997)

    Article  MathSciNet  Google Scholar 

  30. M. Herrmann, B. Mulansky, J.W. Schmidt, Scattered data interpolation subject to piecewise quadratic range restrictions. J. Comput. Appl. Math. 73(1–2), 209–223 (1996)

    Article  MathSciNet  Google Scholar 

  31. M. Hussain, A.A. Majid, M.Z. Hussain, Convexity-preserving Bernstein-Bézier quartic scheme. Egyptian Inf. J. 15, 89–95 (2014)

    Article  Google Scholar 

  32. S.A.A. Karim, A. Saaban, Visualization terrain data using cubic Ball triangular patches. MATEC Web Conf. 225, 06023 (2018)

    Article  Google Scholar 

  33. S.A.A. Karim, A. Saaban, M.K. Hasan, J. Sulaiman, I. Hashim, Interpolation using cubic Bezier triangular patches. Intl. J. Adv. Sci. Eng. Inf. Technol. 8(4–2), 1746–1752 (2018)

    Article  Google Scholar 

  34. S.A.A. Karim, A. Saaban. Construction of New Cubic Triangular Patches with Application in Scattered Data Interpolation Using New Cubic Triangular Patches. (Preprint, 2018)

    Google Scholar 

  35. S.A.A. Karim, A. Saaban. Scattered Data Interpolation Using New Cubic Triangular Patches. Technical Report (Universiti Teknologi PETRONAS, Malaysia, 2018)

    Google Scholar 

  36. V.P. Kong, B.H. Ong, K.H. Saw. Range restricted interpolation using cubic Bézier triangles (2004)

    Google Scholar 

  37. M.J. Lai, C. Meile, Scattered data interpolation with nonnegative preservation using bivariate splines and its application. Comput. Aided Geometr. Des. 34, 37–49 (2015)

    Article  MathSciNet  Google Scholar 

  38. C. Liu, Theory and application of convex curves and surfaces in CAGD (Faculty of Mathematical Sciences, University of Twente, Enschede, 2001)

    Google Scholar 

  39. S.K. Lodha, R. Franke. Scattered data techniques for surfaces, in Proceedings of Scientific Visualization Conferences, June 9–13 (Dagstuhl, Germany, 1997), pp. 1–42

    Google Scholar 

  40. Z. Luo, X. Peng, A C1-rational spline in range restricted interpolation of scattered data. J. Comput. Appl. Math. 194(2), 255–266 (2006)

    Article  MathSciNet  Google Scholar 

  41. B. Mulansky, J.W. Schmidt, Powell-Sabin splines in range restricted interpolation of scattered data. Computing 53(2), 137–154 (1994)

    Article  MathSciNet  Google Scholar 

  42. X. Peng, Z. Li, Q. Sun. Non-negativity preserving interpolation by C1 bivariate rational spline surface. J. Apl. Math. Article ID 624978, 11 (2012)

    Google Scholar 

  43. A.R.M. Piah, T.N.T. Goodman and K. Unsworth. Positivity-preserving scattered data interpolation. In Mathematics of surfaces XI (Springer, Berlin, Heidelberg, 2005), pp. 336–349

    Chapter  Google Scholar 

  44. S. Ping, K.V. Pang. Local normal estimation for scattered data interpolation. In AIP conference proceedings, vol. 1522, No. 1. (AIP, 2013), pp. 448–452

    Google Scholar 

  45. R.J. Renka, Interpolation of scattered data with a C1 convexity-preserving surface. ACM Trans. Math. Softw. 30(2), 200–211 (2004)

    Article  MathSciNet  Google Scholar 

  46. A. Saaban. Parametric interpolation to scattered data, Doctoral dissertation, Universiti Sains Malaysia, 2008

    Google Scholar 

  47. A. Saaban, A.A. Majid, A.R.Mt. Piah. Visualization of rainfall data distribution using quintic triangular bézier patches. Bullet. Malays. Math. Sci. Soc. 32(2), 137–150 (2009)

    Google Scholar 

  48. A. Saaban, A.R.M. Piah, A.A. Majid, Performance of the triangulation-based methods of positivity-preserving scattered data interpolation. Far East J. Math. Sci 57(1), 1–11 (2011)

    MathSciNet  MATH  Google Scholar 

  49. M. Sarfraz, A rational cubic spline for visualization of monotonic data. Comput. Gr. 24(4), 509–516 (2000)

    Article  Google Scholar 

  50. L.L. Schumaker, H. Speleers, Non-negativity preserving macro-element interpolation of scattered data. Comput. Aided Geometr. Des. 27, 245–261 (2010)

    Article  Google Scholar 

  51. Q. Sun, F. Bao, Y. Zhang, Q. Duan, A bivraite rational interpolation based on scattered data on parallel lines. J. Vis. Commun. Image R. 24, 75–80 (2013)

    Article  Google Scholar 

  52. H.G. Timmer, Alternative representation for parametric cubic curves and surfaces. Comput. Aided Des. 12, 25–28 (1980)

    Article  Google Scholar 

  53. J. Wu, Y. Lai, X. Zhang, Radial basis functions for shape preserving planar interpolating curves. J. Inf. Comput. Sci. 7(7), 1453–1458 (2010)

    Google Scholar 

  54. A. Crivellaro, S. Perotto, S. Zonca, Reconstruction of 3D scattered data via radial basis functions by efficient and robust techniques. Appl. Numer. Math. 113, 93–108 (2017)

    Article  MathSciNet  Google Scholar 

  55. G.R. Joldes, H.A. Chowdhury, A. Wittek, B. Doyle, K. Miller, Modified moving least squares with polynomial bases for scattered data approximation. Appl. Math. Comput. 266, 893–902 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is fully supported by Universiti Teknologi PETRONAS (UTP) through a research grant YUTP: 0153AA-H24 (Spline Triangulation for Spatial Interpolation of Geophysical Data).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samsul Ariffin Abdul Karim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, F.A.M., Karim, S.A.A., Dass, S.C., Skala, V., Hasan, M.K., Hashim, I. (2020). Efficient Visualization of Scattered Energy Distribution Data by Using Cubic Timmer Triangular Patches. In: Sulaiman, S. (eds) Energy Efficiency in Mobility Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-0102-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0102-9_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0101-2

  • Online ISBN: 978-981-15-0102-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics