Skip to main content

Epitaxial Growth of SiGe Thin Films

  • Chapter
  • First Online:

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This chapter introduces the research about SiGe growth as well as kinetic mechanism and different growth methods with a focus on reduced pressure chemical vapor deposition (RPCVD) technology. The selective epitaxial growth of high quality strained SiGe films has been studied in detail, and key factors affecting the epitaxial quality and strain for epitaxial grown films has been investigated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Glicksman M (1955) Magnetoresistance of germanium-silicon alloys. Phys Rev 100(4):1146

    Article  ADS  Google Scholar 

  2. Kroemer H (1957) Theory of a wide-gap emitter for transistors. Proc IRE 45:1535–1537

    Article  Google Scholar 

  3. Kasper E, Herzog H, Kibbel H (1975) A one-dimensional SiGe superlattice grown by UHV epitaxy. Appl Phys 8:199–205

    Article  ADS  Google Scholar 

  4. Meyerson BS (1986) Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition. Appl Phys Lett 48:797–799

    Article  ADS  Google Scholar 

  5. Bublik V, Gorelik S, Zaitsev A, Polyakov A (1974) Calculation of the binding energy of Ge–Si solid solution. Physica Status Solidi (b) 65:K79–K84

    Article  ADS  Google Scholar 

  6. Chantre A, Marty M, Regolini J, Mouis M, de Pontcharra J, Dutartre D et al (1998) A high performance low complexity SiGe HBT for BiCMOS integration. In: Bipolar/BiCMOS circuits and technology meeting, 1998. Proceedings of the 1998, pp 93–96

    Google Scholar 

  7. People R, Bean J (1985) Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained-layer heterostructures. Appl Phys Lett 47:322–324

    Article  ADS  Google Scholar 

  8. Kasper E (1995) Properties of strained and relaxed silicon germanium: INSPEC. Institution of electrical engineers, London (1995)

    Google Scholar 

  9. Tamura N, Shimamune Y (2008) 45 nm CMOS technology with low temperature selective epitaxy of SiGe. Appl Surf Sci 254:6067–6071

    Article  ADS  Google Scholar 

  10. Matthews J, Blakeslee A (1976) Defects in epitaxial multilayers: III. Preparation of almost perfect multilayers. J Cryst Growth 32:265–273

    Article  ADS  Google Scholar 

  11. Houghton D (1991) Strain relaxation kinetics in Si1−xGex/Si heterostructures. J Appl Phys 70:2136–2151

    Article  ADS  Google Scholar 

  12. Tamura N, Shimamune Y, Maekawa H (2008) Embedded silicon germanium (eSiGe) technologies for 45 nm nodes and beyond. In: Extended abstracts-2008 8th international workshop on junction technology, 2008. IWJT’08, pp 73–77

    Google Scholar 

  13. Wie CR (1994) High resolution X-ray diffraction characterization of semiconductor structures. Mater Sci Eng R Rep 13:1–56

    Article  Google Scholar 

  14. Fewster PF, Andrew NL (1993) Determining the lattice relaxation in semiconductor layer systems by X-ray diffraction. J Appl Phys 74:3121–3125

    Article  ADS  Google Scholar 

  15. Van der Sluis P (1993) Determination of strain in epitaxial semiconductor layers by high-resolution X-ray diffraction. J Phys D Appl Phys 26:A188

    Article  Google Scholar 

  16. Mi J, Warren P, Gailhanou M, Ganière JD, Dutoit M, Jouneau PH et al (1996) Epitaxial growth of Si1−x−yGexCy alloy layers on (100) Si by rapid thermal chemical vapor deposition using methylsilane. J Vac Sci Technol B 14:1660–1669

    Article  Google Scholar 

  17. Nash LJ (2005) Growth and characterisation of terrace graded virtual substrates with Si1−xGex0.15 ≤ x ≤ 1. University of Warwick

    Google Scholar 

  18. Béché A, Rouvière J, Barnes J, Cooper D (2013) Strain measurement at the nanoscale: comparison between convergent beam electron diffraction, nano-beam electron diffraction, high resolution imaging and dark field electron holography. Ultramicroscopy 131:10–23

    Article  Google Scholar 

  19. Tillack B, Zaumseil P, Morgenstern G, Krüger D, Ritter G (1995) Strain compensation in Si1−xGex by heavy boron doping. Appl Phys Lett 67:1143–1144

    Article  ADS  Google Scholar 

  20. Herzog HJ, Csepregi L, Seidel H (1984) X-ray investigation of boron-and germanium-doped silicon epitaxial layers. J Electrochem Soc 131:2969–2974

    Article  Google Scholar 

  21. Maszara W, Thompson T (1992) Strain compensation by Ge in B-doped silicon epitaxial films. J Appl Phys 72:4477–4479

    Article  ADS  Google Scholar 

  22. Radamson H, Joelsson K, Ni W-X, Hultman L, Hansson G (1995) Characterization of highly boron-doped Si, Si1−x Gex and Ge layers by high-resolution transmission electron microscopy. J Cryst Growth 157:80–84

    Article  ADS  Google Scholar 

  23. Radamson HH, Hållstedt J (2005) Application of high-resolution x-ray diffraction for detecting defects in SiGe (C) materials. J Phys: Condens Matter 17:S2315

    ADS  Google Scholar 

  24. De Salvador D, Petrovich M, Berti M, Romanato F, Napolitani E, Drigo A et al (2000) Lattice parameter of Si1–x−yGexCy alloys. Phys Rev B 61:13005

    Article  ADS  Google Scholar 

  25. Chopra S, Ozturk MC, Misra V, McGuire K, McNeil LE (2006) Analysis of boron strain compensation in silicon-germanium alloys by Raman spectroscopy. Appl Phys Lett 88:202114

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilei Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, G. (2019). Epitaxial Growth of SiGe Thin Films. In: Investigation on SiGe Selective Epitaxy for Source and Drain Engineering in 22 nm CMOS Technology Node and Beyond. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-0046-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0046-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0045-9

  • Online ISBN: 978-981-15-0046-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics