Microprocessor Based Edge Computing for an Internet of Things (IoT) Enabled Distributed Motion Control

  • Wasim Ghder SolimanEmail author
  • D. V. Rama Koti Reddy
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1046)


Edge computing reduces latency, energy overhead and communication bandwidth bottlenecks. In this paper, a designed Proportional-Integrator (PI) motion controller for a Permanent Magnetic DC (PMDC) motor is integrated with IoT technology. This controller receives the preferred speed from the cloud, performs all necessary computation at Edge Level, derives actions and sends both output (real) speed and Integral Absolute Error (IAE) performance index (as an indication of controller performance) to the cloud. Firstly, both system identification and PI controller tuning are performed with the help of MATLAB Simulink and MATLAB support package for ARDUINO. ARDUINO Mega development board is used to implement the controller. An inbuilt PYTHON program in Raspberry Pi 3 is used as a software Gateway to enable receiving/sending data between the controller and the cloud ( IoT platform in our case). However, all necessary computations are intended to take place at Edge level only and this is for the tasks of improving latency, power consumption and bandwidth. Gateway level is used to gather the data coming from Edge level and send it to Cloud level; it is also used to send the data coming from Cloud level to the Edge level. Cloud level is the user interface to the system and enables him to control the speed and receive the controller working performance. An integrated work is the main contribution of current paper in which an attempt to construct a link between research works in both control systems and industrial IoT fields.


Edge computing Internet of Things (IoT) Python programming Permanent magnet direct current (PMDC) motor Proportional Integral (PI) speed controller Integral of absolute error (IAE) performance index 


  1. 1.
    Tosiron, A., Anita, R., et al.: Microprocessor optimizations for the internet of things: a survey. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 37(1), 7–20 (2018)CrossRefGoogle Scholar
  2. 2.
    Xu, L.D., He, W., Shancang, L.: Internet of things in industries. IEEE Trans. Ind. Inform. 10, 1–11 (2014)CrossRefGoogle Scholar
  3. 3.
    John, A.: Research directions for the internet of things. IEEE J. Internet of Things 1(1), 3–9 (2014)CrossRefGoogle Scholar
  4. 4.
    Shanzhi, C., Dake, L., et al.: A vision of IoT: applications, challenges, and opportunities with china perspective. IEEE Internet of Things J. 1(4), 349–359 (2014)CrossRefGoogle Scholar
  5. 5.
    Liu, T., Martonosi, M.: A middleware system for managing autonomic, parallel sensor systems. ACM SIGPLAN Not. 38(10), 107–118 (2003)CrossRefGoogle Scholar
  6. 6.
    Heinzelman, W.B., Murphy, A.L., Carvalho, H.S., Perillo, M.A.: Middleware to support sensor network applications. IEEE Netw. 18(1), 6–14 (2004)CrossRefGoogle Scholar
  7. 7.
    Ashton, K.: That ‘internet of things’ thing, in the real world things matter more than ideas. RFID J. (2009). Atmel
  8. 8.
    IEEE: Internet of Things. Accessed Jan 2017
  9. 9.
    Gershenfeld, N., Krikorian, R., Cohen, D.: The internet of things. Sci. Am. 291(4), 76–81 (2004)CrossRefGoogle Scholar
  10. 10.
  11. 11.
  12. 12.
    Deploying RFID - Challenges, Solutions, and Open Issues. Book edited by C. Turcu, under CC BY-NC-SA 3.0 license, 17 August 2011. ISBN 978-953-307-380-4Google Scholar
  13. 13.
  14. 14.
    Saad, M., Pavlos, N., et al.: Delay mitigation in offloaded cloud controllers in industrial IoT. IEEE Access 5, 4418–4430 (2017)CrossRefGoogle Scholar
  15. 15.
    Zhang, D., Chen, Y.K., Tom, C., et al.: Compensation scheme of position angle errors of permanent-magnet linear motors. IEEE Trans. Magn. 43(10), 3868–3871 (2007)CrossRefGoogle Scholar
  16. 16.
    Tan, K.K., Lee, T.H., Dou, H.F., Chin, S.J., Zhao, S.: Precision motion control with disturbance observer for pulse width-modulated driven permanent-magnet linear motors. IEEE Trans. Magn. 3, 1813–1818 (2003)Google Scholar
  17. 17.
    Otten, G., Vries, T.J.A., Amerongen, J., Rankers, A.M., Gaal, E.W.: Linear motor motion control using a learning feedforward controller. IEEE/ASME Trans. Mechatron. 2(3), 179–187 (1997)CrossRefGoogle Scholar
  18. 18.
    Sankardoss, V., Geethanjali, P.: PMDC motor parameters estimation using bio-inspired optimization algorithms. IEEE Access 5, 11244–11254 (2017)CrossRefGoogle Scholar
  19. 19.
    Salah, M., Abdelatif, M.: Parameters identification of a permanent magnet DC Motor. Conference Paper, pp. 675–685 (2010). 10.2316/PGoogle Scholar
  20. 20.
    Kumar, C.A.: Multi-objective PI controller design with an application to speed control of permanent magnet DC motor drives. In: ICSCCN, pp. 424–429. IEEE (2011)Google Scholar
  21. 21.
    Vermeulen, H.J., Strauss, J.M.: Off-line identification of an open-loop automatic voltage regulator using pseudo-random binary sequence perturbations. IEEE, 0-7803-5546-6/99/, pp. 799–802 (1999)Google Scholar
  22. 22.
    Martins, F.G.: Tuning PID controllers using the ITAE criterion. Tempus Publ. 21(5), 867–873 (2005)Google Scholar
  23. 23.
    Wasim, S., et al.: Microprocessor based permanent magnetic DC motor system identification and optimal PI controller design. In: Proceedings of the 12th INDIACom, IEEE Conference ID: 42835, pp. 1020–1026 (2018)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Wasim Ghder Soliman
    • 1
    Email author
  • D. V. Rama Koti Reddy
    • 1
  1. 1.Instrument Technology, College of EngineeringAndhra UniversityVisakhapatnamIndia

Personalised recommendations