Skip to main content

Development of Triticum Taxonomy

  • Chapter
  • First Online:
Biosystematics of Triticeae

Abstract

Over the past 20 years, the development of cytology, genetics, and crossbreeding has accumulated abundant objective data and documents for wheat, one of the most important crops in the world. New knowledge is helpful for understanding phylogeny of wheat. Correspondingly, some questions challenged the old concept of wheat taxonomy. For instance, the generally accepted six species including commercial cultivars in dinkel reihe can easily hybridize each other and their hybrids usually had normal chromosome pairing and high fertility. The morphological difference used as a key trait of species classification can be caused by a single gene. Such as for the spike shape of T. aestivum and T. spelta, there is only the gene difference between Q and q. The difference between T. compactum and other species is only caused by the gene c, while the difference between T. sphaerococcum and T. aestivum is due to the gene S (Ellerton 1939; McGee 1958). Therefore, many scholars disagreed the treatment of six “species.” They thought that T. aestivum, T. spelta, T. compactum, T. macha, T. vavilovii, and T. sphaerococcum belong to a same species. Thellung (1918), McGee (1954), and Sears (1956a, b) regard them as subspecies of T. aestivum, as following:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bowden, W. N. (1959). The taxonomy and nomoenclature of the wheats, barleys and ryes and their wild relatives. Canadian Journal of Botany, 37, 637–684.

    Google Scholar 

  • Chen, K., Gray, J. C., & Wildman, S. G. (1975). Fraction I protein and the origin of polyploid wheats. Science, 190, 1304–1306.

    Article  CAS  Google Scholar 

  • Croston, R. P., & Williams, J. T. (1981). A world survey of wheat geneticre sources. Rome: IBPGR Secretariat.

    Google Scholar 

  • Dhaliwal, H. S. (1977). Origin of Triticum monococcum L. Wheat Information Service, 44, 14–17.

    Google Scholar 

  • Dubcovsky, J., & Dvorak, J. (1995). Genome identification of the Triticum crassum complex (Poaceae) with the restriction patterns of repeated nucleotide sequences. American Journal of Botany, 82, 131–140.

    Article  CAS  Google Scholar 

  • Dvorak, J., Mcguire, P. E., Cassidy, B., et al. (1988). Apparent sources of the A genomes of wheats inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide sequences. Genome, 30, 680–689.

    Article  CAS  Google Scholar 

  • Dvorak, J., & Zhang, H. B. (1990). Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proceedings of the National Academy of Sciences of the United States of America, 87, 9640–9644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvorak, J., Terlizzi, P. D., Zhang, H., et al. (1993). The evolution of polyploid wheats: identification of the A genome donor species. Genome, 36, 21–31.

    Article  CAS  PubMed  Google Scholar 

  • Dvorak, J., Luo, M. C., Yang, Z. L., et al. (1998). The structure of Aegilops tauschii genepool and evolution of hexaploid wheat. Theoretical and Applied Genetics, 97, 657–670.

    Article  CAS  Google Scholar 

  • Eig, A. (1929). Monographisch-Kritische Uebersicht der Gattung Aegilops. Repert. Sp. Nov. Fedde Beih., 55, 1–228.

    Google Scholar 

  • Ellerton, S. (1939). The origin and geographical distribution of Triticum sphaerococcum Perc. and its cytogenetical behaviour in crosses with T. vulgare Vill. Journal of Genetics, 38, 307–324.

    Article  Google Scholar 

  • Feldman, M. (1976). Wheats. In N. W. Simmonds (Ed.), Evolution of crop plants. London: Longman.

    Google Scholar 

  • Hammer, K. (1980). Zur Taxonomie und Nomenklatur der Gattung Aegilops L. Feddes Repertorium, 91, 225–258.

    Article  Google Scholar 

  • Johnson, B. L., & Dhaliwal, H. S. (1976). Reproductive isolation of Triticum boeoticum and Triticum urartu and the origin of the tetraploid wheat. American Journal of Botany, 63, 1088–1094.

    Article  Google Scholar 

  • Johnson, B. L., & Dhaliwal, H. S. (1978). Triticum urartu and genome evolution in the tetraploid wheat. American Journal of Botany, 55, 907–918.

    Article  Google Scholar 

  • Kihara, H. (1959). Fertility and morphological variation in the substitution and restoration backcrosses of the hybrid, Triticum vulgare × Aegilops caudata. In Proceedings of 10th International Congress of Genetics, 1, pp. 142–171.

    Google Scholar 

  • Kihara, H. (1963). Nucleus and chromosome substition in wheat and Aegilops. I. Nucleus substitution. In Proceedings of 2nd International wheat genetics Symposium, University of Lund, Sweden, Hereditas Supll., 2, pp. 313–327.

    Google Scholar 

  • Kihara, H. (1966). Factors affecting the evolution of common wheat. Indian Journal of Genetics, 26A, 14–28.

    Google Scholar 

  • Kihara, H. 1968. Cytoplasmic relationships in Triticinae. In Proceedings of 3rd International Wheat Genetics Symposium, Canberra, Butterworth, Australia, pp. 125–134.

    Google Scholar 

  • Kihara, H. (1970). Addendum to the classification of the genus Aegilops by means of genome-analysis. Wheat Inform Serv, 30, 1–2.

    Google Scholar 

  • Kihara, H., Hosono, S., Nishiyama, I., et al. (1954). A study of wheat. Tokyo: Yokendo.

    Google Scholar 

  • Kimber, G., & Feldman, M. (1987). Wild wheat, an introduction (Special Report 353). Columbia: College of Agriculture, University of Missouri.

    Google Scholar 

  • Konzak, C. F. L. (1977). Genetic control of the content, amino acid composition, and processing properties of proteins in wheat. Advances in Genetics, 19, 407–582.

    Article  CAS  PubMed  Google Scholar 

  • Lilienfeld, F. A., & Kihara, H. (1934). Genomannalyse bei Triticum timopheevi Zhuk. Cytologia, 6, 87–122.

    Google Scholar 

  • Löve, A. (1982). Generic evolution of the wheatgrasses. Biologisches Zentralblatt, 101, 199–212.

    Google Scholar 

  • Löve, A. (1984). Conspectus of the Triticeae. Feddes Repert, 95, 425–521.

    Google Scholar 

  • Maan, S. S., & Lucken, K. A. (1968). Cytoplasmic male sterility and fertility restoration in Triticum L. I. effects of aneuploidy. II. Male-sterility-fertility restoration systems. In Proceedings of 3rd International Wheat Genetics Symposium, Canbera, Butterworth, Australia, pp. 135–140.

    Google Scholar 

  • MacKey, J. (1954). The taxonomy of hexaploid wheat. Svensk Botanisk Tidskrift, 48, 579–590.

    Google Scholar 

  • MacKey, J. (1966). Species relationship in Triticum. In Proceedings of 2nd International Wheat Genetics Symposium, Hereditas Suppl., 2, pp. 237–276.

    Google Scholar 

  • MacKey, J. (1968). Relationships in the Triticinae. In Proceedings of 3rd International Wheat Genetics Symposium, Canberra, pp. 39–50.

    Google Scholar 

  • MacKey J. (1975). The boundaries and subdivision of the genus Triticum. In Proceedings of 12th International Bot. Congr., St. Petersburg, 2, p. 509 (abstract).

    Google Scholar 

  • Mello-Sampaye, T. (1968). Homoeologous chromosome pairingin pentaploid hybrids of wheat. In Proceedings of 3rd International Wheat Genetics Symposium, Canbera, Butterworth, Australia, pp. 179–184.

    Google Scholar 

  • Morris, R., & Sears, E. R. (1967). The cytogenetics of wheat and its relatives. In L. P. Reitz (Ed.), Quisenberry KS (pp. 19–87). Madison, WI: Wheat and wheat improvement. Am Soc Agron.

    Google Scholar 

  • Morrison, J. W. (1953). Chromosome behaviour in wheat monosomies. Heredity, 7, 203–217.

    Article  Google Scholar 

  • Ogihara, Y., & Tsunewaki, K. (1988). Diversity and evolution of chloroplast DNA in Triticum and Aegilops as revealed by restriction fragment analysis. Theoretical and Applied Genetics, 76, 321–332.

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka, I. (1983). Classification of tetraploid wheat based on responses to Aegilops squarrosa cytoplasm cytocytoplasm and origin of dinkel wheat. In Proceedings of 6th International Wheat Genetics Symposium, Kyoto, Japan, pp. 993–1001.

    Google Scholar 

  • Okamoto, M. (1957). Asynaptic effect of chromosome V. Wheat Information Service, 5, 6.

    Google Scholar 

  • Riley, R. (1966). Genetics and the regulation of meiotic chromosome behaviour. Science Progress, 54, 193–207.

    CAS  PubMed  Google Scholar 

  • Riley, R. (1968). The basic and applied genetics of chromosome pairing. In Proceedings of 3rd International Wheat Genetics Symposium, Canbera, Butterworth, Australia, pp. 185–195.

    Google Scholar 

  • Riley, R., & Law, C. N. (1965). Genetic variation in chromosome pairing. Advances in Genetics, 13, 57–144. Academic Press, New York.

    Article  Google Scholar 

  • Riley, R., Unrau, J., & Chapman, V. (1958). Evidence on the origin of the Bgenome of wheat. The Journal of Heredity, 49, 91–98.

    Article  Google Scholar 

  • Sears, E. R. (1956a). The B genome in wheat. Wheat Information Service, 4, 8–10.

    Google Scholar 

  • Sears, E. R. (1956b). Weizen. I. The systematics, cytology and genetics of wheat. Handbuch der Pflanzenzüchtung, 11, 164–187.

    Google Scholar 

  • Sears, E. R., & Okamoto, M. (1958). Inter genomic chromosme relationship in hexaploid wheat. In Proceedings of 10th International Congress Genetics, Montreal, Canada, 2, pp. 258–259.

    Google Scholar 

  • Scholz, H., & Slageren, M. W. V. (1994). (1089) Proposal to Conserve Aegilops caudata (Gramineae) with a Conserved Type. Taxon, 43, 293–296.

    Article  Google Scholar 

  • Suemoto, H. (1968). The origin of the cytoplasm of tetraploid wheats. In Proceedings of 3rd International Wheat Genetics Symposium, Butterworth, Canbera, Australia, pp. 141–152.

    Google Scholar 

  • Suemoto, H. (1973. The origin of the cytoplasm of tetraploid wheat. In Proceedings 4th International Wheat Genetics Symposium, Missouri, Columbia, MO, USA, pp. 109–113.

    Google Scholar 

  • Thellung, A. (1918). Neuere Wege und Ziele der botanichen Systematik, erläutert am Beispiele unserer Getreidearten. Naurew. Wochenschr, 17(449–458), 466–474.

    Google Scholar 

  • Upadhya, M. D. (1966). Altered potency of chromosome 5B in wheat-caudata hybrids. Wheat Information Service, 22, 7–9.

    Google Scholar 

  • van Slageren, M. W. (1994). Wild wheats: A monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). ICARDA and Wageningen Agricultural University, Netherland.

    Google Scholar 

  • Wilson, J. A., & Ross, W. M. (1962). Male sterility interaction of the Triticum aestivum nucleusand Triticum timopheevi cytoplasm. Wheat Information Service, 14, 29–31.

    Google Scholar 

  • Yen, Y., & Kimber, G. (1990). Genomic relationships of Tricicum searsii to other S-genome diploid Triticum species. Genome, 33, 369–373.

    Article  Google Scholar 

  • Zhang, H., & Dvorak, J. (1992). The genome origin and evolution of hexaploid Triticum crassum and Triticum syriacum determined from variation in repeated nucleotide sequences. Genome, 35, 806–814.

    Article  CAS  Google Scholar 

  • Zhang, H. B., Dvorak, J., & Waines, J. G. (1992). Diploid ancestry and evolution of Triticum kotschyi, and T. peregrinum, examined using variation in repeated nucleotide sequences. Genome, 35, 182–191.

    Article  CAS  Google Scholar 

  • Zohary, D., & Feldman, M. (1962). Hybridization between amphidploids and the evolution of polyploids in the wheat (Aegilops-Triticum) group. Evolution, 16, 44–61.

    Article  Google Scholar 

  • Zohary, D., & Imber, D. (1963). Genetic dimorphism in fruit types in Aegilops speltoides. Heredity, 18, 223–231.

    Article  Google Scholar 

  • Дорофеев, В. Х., & ц Мцгущова, З. Х. (1979). Система рода Triticum L. Вестник с-х Науки, (2), 18–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 China Agriculture Press & Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yen, C., Yang, J., Yuan, Z., Ning, S., Liu, D. (2020). Development of Triticum Taxonomy. In: Biosystematics of Triticeae. Springer, Singapore. https://doi.org/10.1007/978-981-13-9931-2_7

Download citation

Publish with us

Policies and ethics