Skip to main content

Neuroglia in Ageing

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1175)

Abstract

Ageing reduces the functional capacity of all organs, so does that of the nervous system; the latter is evident in the reduction of cognitive abilities, learning and memory. While the exact mechanisms of ageing of the nervous system remain elusive, it is without doubt that morpho-functional changes in a variety of neuroglial cells contribute to this process. The age-dependent changes in neuroglia are characterised by a progressive loss of function. This reduces glial ability to homeostatically nurture, protect and regenerate the nervous tissue. Such neuroglial paralysis also facilitates neurodegenerative processes. Ageing of neuroglia is variable and can be affected by environmental factors and comorbidities.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   139.09
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   179.34
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   179.34
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bartzokis G, Beckson M, Lu PH, Nuechterlein KH, Edwards N, Mintz J (2001) Age-related changes in frontal and temporal lobe volumes in men: a magnetic resonance imaging study. Arch Gen Psychiatry 58:461–465

    CrossRef  CAS  PubMed  Google Scholar 

  2. Bisht K, Sharma KP, Lecours C, Sanchez MG, El Hajj H, Milior G, Olmos-Alonso A, Gomez-Nicola D, Luheshi G, Vallieres L, Branchi I, Maggi L, Limatola C, Butovsky O, Tremblay ME (2016) Dark microglia: a new phenotype predominantly associated with pathological states. Glia 64:826–839

    CrossRef  PubMed  PubMed Central  Google Scholar 

  3. Black S, Gao F, Bilbao J (2009) Understanding white matter disease: imaging-pathological correlations in vascular cognitive impairment. Stroke 40:S48–52

    CrossRef  PubMed  Google Scholar 

  4. Boisvert MM, Erikson GA, Shokhirev MN, Allen NJ (2018) The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep 22:269–285

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bolos M, Llorens-Martin M, Jurado-Arjona J, Hernandez F, Rabano A, Avila J (2016) Direct evidence of internalization of tau by microglia in vitro and in vivo. J Alzheimer’s Dis 50:77–87

    CrossRef  CAS  Google Scholar 

  6. Calhoun ME, Kurth D, Phinney AL, Long JM, Hengemihle J, Mouton PR, Ingram DK, Jucker M (1998) Hippocampal neuron and synaptophysin-positive bouton number in aging C57BL/6 mice. Neurobiol Aging 19:599–606

    CrossRef  CAS  PubMed  Google Scholar 

  7. Cerbai F, Lana D, Nosi D, Petkova-Kirova P, Zecchi S, Brothers HM, Wenk GL, Giovannini MG (2012) The neuron-astrocyte-microglia triad in normal brain ageing and in a model of neuroinflammation in the rat hippocampus. PLoS ONE 7:e45250

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clarke LE, Liddelow SA, Chakraborty C, Munch AE, Heiman M, Barres BA (2018) Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci USA 115:E1896–E1905

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cruz NF, Ball KK, Dienel GA (2010) Astrocytic gap junctional communication is reduced in amyloid-beta-treated cultured astrocytes, but not in Alzheimer’s disease transgenic mice. ASN Neuro 2:e00041

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  10. David JP, Ghozali F, Fallet-Bianco C, Wattez A, Delaine S, Boniface B, Di Menza C, Delacourte A (1997) Glial reaction in the hippocampal formation is highly correlated with aging in human brain. Neurosci Lett 235:53–56

    CrossRef  CAS  PubMed  Google Scholar 

  11. Davies DS, Ma J, Jegathees T, Goldsbury C (2017) Microglia show altered morphology and reduced arborization in human brain during aging and Alzheimer’s disease. Brain Pathol 27:795–808

    CrossRef  CAS  PubMed  Google Scholar 

  12. Dickstein D, Kabaso D, Rocher A, Luebke J, Wearne S, Hof P (2006) Changes in the structural complexity of the aged brain. Aging Cell 6:275–284

    CrossRef  CAS  Google Scholar 

  13. Dimou L, Gallo V (2015) NG2-glia and their functions in the central nervous system. Glia 63:1429–1451

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  14. Diniz DG, Foro CA, Rego CM, Gloria DA, de Oliveira FR, Paes JM, de Sousa AA, Tokuhashi TP, Trindade LS, Turiel MC, Vasconcelos EG, Torres JB, Cunnigham C, Perry VH, Vasconcelos PF, Diniz CW (2010) Environmental impoverishment and aging alter object recognition, spatial learning, and dentate gyrus astrocytes. Eur J Neurosci 32:509–519

    CrossRef  PubMed  Google Scholar 

  15. Douaud G, Groves AR, Tamnes CK, Westlye LT, Duff EP, Engvig A, Walhovd KB, James A, Gass A, Monsch AU, Matthews PM, Fjell AM, Smith SM, Johansen-Berg H (2014) A common brain network links development, aging, and vulnerability to disease. Proc Natl Acad Sci USA 111:17648–17653

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  16. Duarte JM, Do KQ, Gruetter R (2014) Longitudinal neurochemical modifications in the aging mouse brain measured in vivo by 1H magnetic resonance spectroscopy. Neurobiol Aging 35:1660–1668

    CrossRef  CAS  PubMed  Google Scholar 

  17. Emir UE, Raatz S, McPherson S, Hodges JS, Torkelson C, Tawfik P, White T, Terpstra M (2011) Noninvasive quantification of ascorbate and glutathione concentration in the elderly human brain. NMR Biomed 24:888–894

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  18. Erickson CA, Barnes CA (2003) The neurobiology of memory changes in normal aging. Exp Gerontol 38:61–69

    CrossRef  CAS  PubMed  Google Scholar 

  19. Fabricius K, Jacobsen JS, Pakkenberg B (2013) Effect of age on neocortical brain cells in 90+ year old human females—a cell counting study. Neurobiol Aging 34:91–99

    CrossRef  PubMed  Google Scholar 

  20. Fabris N (1991) Neuroendocrine-immune interactions: a theoretical approach to aging. Arch Gerontol Geriatr 12:219–230

    CrossRef  CAS  PubMed  Google Scholar 

  21. Franceschi C (2007) Inflammaging as a major characteristic of old people: can it be prevented or cured? Nutr Rev 65:S173–176

    CrossRef  PubMed  Google Scholar 

  22. Garaschuk O, Verkhratsky A (2019) GABAergic astrocytes in Alzheimer’s disease. Aging (Albany NY) 11:1602–1604

    CrossRef  Google Scholar 

  23. Geinisman Y, Ganeshina O, Yoshida R, Berry RW, Disterhoft JF, Gallagher M (2004) Aging, spatial learning, and total synapse number in the rat CA1 stratum radiatum. Neurobiol Aging 25:407–416

    CrossRef  CAS  PubMed  Google Scholar 

  24. Gomez-Gonzalo M, Martin-Fernandez M, Martinez-Murillo R, Mederos S, Hernandez-Vivanco A, Jamison S, Fernandez AP, Serrano J, Calero P, Futch HS, Corpas R, Sanfeliu C, Perea G, Araque A (2017) Neuron-astrocyte signaling is preserved in the aging brain. Glia 65:569–580

    CrossRef  PubMed  PubMed Central  Google Scholar 

  25. Griffin R, Nally R, Nolan Y, McCartney Y, Linden J, Lynch MA (2006) The age-related attenuation in long-term potentiation is associated with microglial activation. J Neurochem 99:1263–1272

    CrossRef  CAS  PubMed  Google Scholar 

  26. Grosche A, Grosche J, Tackenberg M, Scheller D, Gerstner G, Gumprecht A, Pannicke T, Hirrlinger PG, Wilhelmsson U, Huttmann K, Hartig W, Steinhauser C, Pekny M, Reichenbach A (2013) Versatile and simple approach to determine astrocyte territories in mouse neocortex and hippocampus. PLoS ONE 8:e69143

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hardy RN, Simsek ZD, Curry B, Core SL, Beltz T, Xue B, Johnson AK, Thunhorst RL, Curtis KS (2018) Aging affects isoproterenol-induced water drinking, astrocyte density, and central neuronal activation in female Brown Norway rats. Physiol Behav 192:90–97

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harley CB, Vaziri H, Counter CM, Allsopp RC (1992) The telomere hypothesis of cellular aging. Exp Gerontol 27:375–382

    CrossRef  CAS  PubMed  Google Scholar 

  29. Harman D (1965) The free radical theory of aging: effect of age on serum copper levels. J Gerontol 20:151–153

    CrossRef  CAS  PubMed  Google Scholar 

  30. Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147

    CrossRef  CAS  PubMed  Google Scholar 

  31. Harris JL, Choi IY, Brooks WM (2015) Probing astrocyte metabolism in vivo: proton magnetic resonance spectroscopy in the injured and aging brain. Front Aging Neurosci 7:202

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Harris JL, Yeh HW, Swerdlow RH, Choi IY, Lee P, Brooks WM (2014) High-field proton magnetic resonance spectroscopy reveals metabolic effects of normal brain aging. Neurobiol Aging 35:1686–1694

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haug H, Eggers R (1991) Morphometry of the human cortex cerebri and corpus striatum during aging. Neurobiol Aging 12:336–338; discussion 352–335

    Google Scholar 

  34. Hayakawa N, Kato H, Araki T (2007) Age-related changes of astorocytes, oligodendrocytes and microglia in the mouse hippocampal CA1 sector. Mech Ageing Dev 128:311–316

    CrossRef  CAS  PubMed  Google Scholar 

  35. Hedden T, Gabrieli JD (2004) Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci 5:87–96

    CrossRef  CAS  PubMed  Google Scholar 

  36. Jessen NA, Munk AS, Lundgaard I, Nedergaard M (2015) The glymphatic system: a beginner’s guide. Neurochem Res 40:2583–2599

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiang T, Cadenas E (2014) Astrocytic metabolic and inflammatory changes as a function of age. Aging Cell

    Google Scholar 

  38. Juurlink BH, Thorburne SK, Hertz L (1998) Peroxide-scavenging deficit underlies oligodendrocyte susceptibility to oxidative stress. Glia 22:371–378

    CrossRef  CAS  PubMed  Google Scholar 

  39. Kanungo MS (1975) A model for ageing. J Theoret Biol 53:253–261

    CrossRef  CAS  Google Scholar 

  40. Khachaturian ZS (1987) Hypothesis on the regulation of cytosol calcium concentration and the aging brain. Neurobiol Aging 8:345–346

    CrossRef  CAS  PubMed  Google Scholar 

  41. Kirischuk S, Parpura V, Verkhratsky A (2012) Sodium dynamics: another key to astroglial excitability? Trends Neurosci 35:497–506

    CrossRef  CAS  PubMed  Google Scholar 

  42. Kress BT, Iliff JJ, Xia M, Wang M, Wei H, Zeppenfeld D, Xie L, Kang H, Xu Q, Liew J, Plog BA, Ding F, Deane R, Nedergaard M (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol

    Google Scholar 

  43. Krimer LS, Hyde TM, Herman MM, Saunders RC (1997) The entorhinal cortex: an examination of cyto- and myeloarchitectonic organization in humans. Cereb Cortex 7:722–731

    CrossRef  CAS  PubMed  Google Scholar 

  44. Lalo U, Palygin O, North RA, Verkhratsky A, Pankratov Y (2011) Age-dependent remodelling of ionotropic signalling in cortical astroglia. Aging Cell 10:392–402

    CrossRef  CAS  PubMed  Google Scholar 

  45. Landfield PW (1987) ‘Increased calcium-current’ hypothesis of brain aging. Neurobiol Aging 8:346–347

    CrossRef  CAS  PubMed  Google Scholar 

  46. Lee DC, Ruiz CR, Lebson L, Selenica ML, Rizer J, Hunt JB Jr, Rojiani R, Reid P, Kammath S, Nash K, Dickey CA, Gordon M, Morgan D (2013) Aging enhances classical activation but mitigates alternative activation in the central nervous system. Neurobiol Aging 34:1610–1620

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  47. Logan JM, Sanders AL, Snyder AZ, Morris JC, Buckner RL (2002) Under-recruitment and nonselective recruitment: dissociable neural mechanisms associated with aging. Neuron 33:827–840

    CrossRef  CAS  PubMed  Google Scholar 

  48. Lopez-Otin C, Galluzzi L, Freije JMP, Madeo F, Kroemer G (2016) Metabolic control of longevity. Cell 166:802–821

    CrossRef  CAS  PubMed  Google Scholar 

  49. Lynch AM, Murphy KJ, Deighan BF, O’Reilly JA, Gun’ko YK, Cowley TR, Gonzalez-Reyes RE, Lynch MA (2010) The impact of glial activation in the aging brain. Aging Dis 1:262–278

    PubMed  PubMed Central  Google Scholar 

  50. Maher P (2005) The effects of stress and aging on glutathione metabolism. Ageing Res Rev 4:288–314

    CrossRef  CAS  PubMed  Google Scholar 

  51. Matute C, Alberdi E, Domercq M, Sanchez-Gomez MV, Perez-Samartin A, Rodriguez-Antiguedad A, Perez-Cerda F (2007) Excitotoxic damage to white matter. J Anat 210:693–702

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  52. Medvedev ZA (1990) An attempt at a rational classification of theories of ageing. Biol Rev Camb Philos Soc 65:375–398

    CrossRef  CAS  PubMed  Google Scholar 

  53. Micu I, Jiang Q, Coderre E, Ridsdale A, Zhang L, Woulfe J, Yin X, Trapp BD, McRory JE, Rehak R, Zamponi GW, Wang W, Stys PK (2006) NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439:988–992

    CrossRef  CAS  PubMed  Google Scholar 

  54. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nichols NR, Day JR, Laping NJ, Johnson SA, Finch CE (1993) GFAP mRNA increases with age in rat and human brain. Neurobiol Aging 14:421–429

    CrossRef  CAS  PubMed  Google Scholar 

  56. Nicholson DA, Yoshida R, Berry RW, Gallagher M, Geinisman Y (2004) Reduction in size of perforated postsynaptic densities in hippocampal axospinous synapses and age-related spatial learning impairments. J Neurosci 24:7648–7653

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ogura K, Ogawa M, Yoshida M (1994) Effects of ageing on microglia in the normal rat brain: immunohistochemical observations. NeuroReport 5:1224–1226

    CrossRef  CAS  PubMed  Google Scholar 

  58. Orre M, Kamphuis W, Osborn LM, Jansen AH, Kooijman L, Bossers K, Hol EM (2014) Isolation of glia from Alzheimer’s mice reveals inflammation and dysfunction. Neurobiol Aging

    Google Scholar 

  59. Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B (2008) Neocortical glial cell numbers in human brains. Neurobiol Aging 29:1754–1762

    CrossRef  CAS  PubMed  Google Scholar 

  60. Perry VH, Matyszak MK, Fearn S (1993) Altered antigen expression of microglia in the aged rodent CNS. Glia 7:60–67

    CrossRef  CAS  PubMed  Google Scholar 

  61. Peters A, Josephson K, Vincent SL (1991) Effects of aging on the neuroglial cells and pericytes within area 17 of the rhesus monkey cerebral cortex. Anat Rec 229:384–398

    CrossRef  CAS  PubMed  Google Scholar 

  62. Peters A, Sethares C (2004) Oligodendrocytes, their progenitors and other neuroglial cells in the aging primate cerebral cortex. Cereb Cortex 14:995–1007

    CrossRef  PubMed  Google Scholar 

  63. Peters O, Schipke CG, Philipps A, Haas B, Pannasch U, Wang LP, Benedetti B, Kingston AE, Kettenmann H (2009) Astrocyte function is modified by Alzheimer’s disease-like pathology in aged mice. J Alzheimers Dis 18:177–189

    CrossRef  CAS  PubMed  Google Scholar 

  64. Potokar M, Stenovec M, Jorgacevski J, Holen T, Kreft M, Ottersen OP, Zorec R (2013) Regulation of AQP4 surface expression via vesicle mobility in astrocytes. Glia 61:917–928

    CrossRef  PubMed  Google Scholar 

  65. Provenzano FA, Muraskin J, Tosto G, Narkhede A, Wasserman BT, Griffith EY, Guzman VA, Meier IB, Zimmerman ME, Brickman AM, Alzheimer’s Disease Neuroimaging I (2013) White matter hyperintensities and cerebral amyloidosis: necessary and sufficient for clinical expression of Alzheimer disease? JAMA Neurol 70, 455–461

    Google Scholar 

  66. Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, Dahle C, Gerstorf D, Acker JD (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15:1676–1689

    CrossRef  PubMed  Google Scholar 

  67. Rodriguez-Callejas JD, Fuchs E, Perez-Cruz C (2016) Evidence of Tau hyperphosphorylation and dystrophic microglia in the common marmoset. Front Aging Neurosci 8:315

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rodriguez JJ, Terzieva S, Olabarria M, Lanza RG, Verkhratsky A (2013) Enriched environment and physical activity reverse astrogliodegeneration in the hippocampus of AD transgenic mice. Cell Death Dis 4:e678

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rodriguez JJ, Yeh CY, Terzieva S, Olabarria M, Kulijewicz-Nawrot M, Verkhratsky A (2014) Complex and region-specific changes in astroglial markers in the aging brain. Neurobiol Aging 35:15–23

    CrossRef  CAS  PubMed  Google Scholar 

  70. Rose CF, Verkhratsky A, Parpura V (2013) Astrocyte glutamine synthetase: pivotal in health and disease. Biochem Soc Trans 41:1518–1524

    CrossRef  CAS  PubMed  Google Scholar 

  71. Rose CR, Verkhratsky A (2016) Principles of sodium homeostasis and sodium signalling in astroglia. Glia

    Google Scholar 

  72. Ruzicka V (1924) Beitrage zum Stadium der Protoplasmahysteretischen Vorgange (Zur Kausalitat der Alterns). Archiv fur mikroskopische Anatomie und Entwicklungsmechanik 101:459–482

    CrossRef  Google Scholar 

  73. Ruzicka V (1926) Altern und Verjungung won Standpunkt der allegemeinen Biologie. Praha, Praha

    Google Scholar 

  74. Salter MG, Fern R (2005) NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 438:1167–1171

    CrossRef  CAS  PubMed  Google Scholar 

  75. Sampedro-Piquero P, De Bartolo P, Petrosini L, Zancada-Menendez C, Arias JL, Begega A (2014) Astrocytic plasticity as a possible mediator of the cognitive improvements after environmental enrichment in aged rats. Neurobiol Learn Mem 114:16–25

    CrossRef  CAS  PubMed  Google Scholar 

  76. Schoenemann PT, Sheehan MJ, Glotzer LD (2005) Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat Neurosci 8:242–252

    CrossRef  CAS  PubMed  Google Scholar 

  77. Sharaf A, Krieglstein K, Spittau B (2013) Distribution of microglia in the postnatal murine nigrostriatal system. Cell Tissue Res 351:373–382

    CrossRef  PubMed  Google Scholar 

  78. Sheffield LG, Berman NE (1998) Microglial expression of MHC class II increases in normal aging of nonhuman primates. Neurobiol Aging 19:47–55

    CrossRef  CAS  PubMed  Google Scholar 

  79. Sierra A, Gottfried-Blackmore AC, McEwen BS, Bulloch K (2007) Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 55:412–424

    CrossRef  PubMed  Google Scholar 

  80. Smith TD, Adams MM, Gallagher M, Morrison JH, Rapp PR (2000) Circuit-specific alterations in hippocampal synaptophysin immunoreactivity predict spatial learning impairment in aged rats. J Neurosci 20:6587–6593

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  81. Soreq L, Consortium UKBE, North American Brain Expression C, Rose J, Soreq E, Hardy J, Trabzuni D, Cookson MR, Smith C, Ryten M, Patani R, Ule J (2017) Major shifts in glial regional identity are a transcriptional hallmark of human brain aging. Cell Rep 18:557–570

    Google Scholar 

  82. Stern Y (2009) Cognitive reserve. Neuropsychologia 47:2015–2028

    CrossRef  PubMed  PubMed Central  Google Scholar 

  83. Streit WJ, Braak H, Xue QS, Bechmann I (2009) Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol 118:475–485

    CrossRef  PubMed  PubMed Central  Google Scholar 

  84. Streit WJ, Sammons NW, Kuhns AJ, Sparks DL (2004) Dystrophic microglia in the aging human brain. Glia 45:208–212

    CrossRef  PubMed  Google Scholar 

  85. Streit WJ, Xue QS, Tischer J, Bechmann I (2014) Microglial pathology. Acta Neuropathol Commun 2:142

    CrossRef  PubMed  Google Scholar 

  86. Taylor RC (2016) Aging and the UPR(ER). Brain Res 1648:588–593

    CrossRef  CAS  PubMed  Google Scholar 

  87. Thorburne SK, Juurlink BH (1996) Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J Neurochem 67:1014–1022

    CrossRef  CAS  PubMed  Google Scholar 

  88. Tischer J, Krueger M, Mueller W, Staszewski O, Prinz M, Streit WJ, Bechmann I (2016) Inhomogeneous distribution of Iba-1 characterizes microglial pathology in Alzheimer’s disease. Glia 64:1562–1572

    CrossRef  PubMed  Google Scholar 

  89. Toescu EC, Verkhratsky A (2007) The importance of being subtle: small changes in calcium homeostasis control cognitive decline in normal aging. Aging Cell 6:267–273

    CrossRef  CAS  PubMed  Google Scholar 

  90. Tse KH, Herrup K (2017) DNA damage in the oligodendrocyte lineage and its role in brain aging. Mech Ageing Dev 161:37–50

    CrossRef  CAS  PubMed  Google Scholar 

  91. VanGuilder HD, Bixler GV, Brucklacher RM, Farley JA, Yan H, Warrington JP, Sonntag WE, Freeman WM (2011) Concurrent hippocampal induction of MHC II pathway components and glial activation with advanced aging is not correlated with cognitive impairment. J Neuroinflammation 8:138

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  92. Verkhratsky A, Kirchhoff F (2007) NMDA Receptors in glia. Neuroscientist 13:28–37

    CAS  PubMed  Google Scholar 

  93. Verkhratsky A, Marutle A, Rodriguez-Arellano JJ, Nordberg A (2015) Glial asthenia and functional paralysis: a new perspective on neurodegeneration and Alzheimer’s disease. Neuroscientist 21:552–568

    CrossRef  CAS  PubMed  Google Scholar 

  94. Verkhratsky A, Matteoli M, Parpura V, Mothet JP, Zorec R (2016) Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. EMBO J 35:239–257

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  95. Verkhratsky A, Nedergaard M (2018) Physiology of Astroglia. Physiol Rev 98:239–389

    CrossRef  CAS  PubMed  Google Scholar 

  96. Verkhratsky A, Rodriguez JJ, Parpura V (2012) Calcium signalling in astroglia. Mol Cell Endocrinol 353:45–56

    CrossRef  CAS  PubMed  Google Scholar 

  97. Verkhratsky A, Untiet V, Rose CR (2019) Ionic signalling in astroglia beyond calcium. J Physiol

    Google Scholar 

  98. Walhovd KB, Johansen-Berg H, Karadottir RT (2014) Unraveling the secrets of white matter—bridging the gap between cellular, animal and human imaging studies. Neuroscience 276C:2–13

    CrossRef  CAS  Google Scholar 

  99. Weismann A (1881) Ueber die Dauer des Lebens. Vortrag, in der 2. allgemeinen Sitzung d. 54. Versammlung Deutscher Naturforscher u. Aerzte in Salzburg, am 21, Sept 1881

    Google Scholar 

  100. West MJ (1993) Regionally specific loss of neurons in the aging human hippocampus. Neurobiol Aging 14:287–293

    CrossRef  CAS  PubMed  Google Scholar 

  101. Young VG, Halliday GM, Kril JJ (2008) Neuropathologic correlates of white matter hyperintensities. Neurology 71:804–811

    CrossRef  PubMed  Google Scholar 

  102. Zhu X, Hill RA, Dietrich D, Komitova M, Suzuki R, Nishiyama A (2011) Age-dependent fate and lineage restriction of single NG2 cells. Development 138:745–753

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zorec R, Parpura V, Verkhratsky A (2018) Preventing neurodegeneration by adrenergic astroglial excitation. FEBS J

    Google Scholar 

Download references

Acknowledgments

VP’s work is supported by a grant from the National Institute of General Medical Sciences of the National Institutes of Health (R01GM123971). VP is an Honorary Professor at University of Rijeka, Croatia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Verkhratsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verkhratsky, A., Zorec, R., Rodriguez-Arellano, J.J., Parpura, V. (2019). Neuroglia in Ageing. In: Verkhratsky, A., Ho, M., Zorec, R., Parpura, V. (eds) Neuroglia in Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, vol 1175. Springer, Singapore. https://doi.org/10.1007/978-981-13-9913-8_8

Download citation

Publish with us

Policies and ethics