Skip to main content

Chemical-Mediated Alteration of Antibiotics

  • Chapter
  • First Online:
Antibiotic Resistant Bacteria: A Challenge to Modern Medicine

Abstract

Bacteria have evolved resistance mechanisms against currently available antibiotics. They have acquired resistance by mutating and altering the target sites, gene transfer, or chemical structure of antibiotics, etc. Chemical alteration of antibiotic is facilitated with the help of enzymes. These enzymes can alter the structure of different classes of antibiotics without affecting the other metabolic functions of bacteria. Therefore, by using such chemical device, bacteria can cope up with currently available antibiotics and threatened the world with deadly disease. In this regard, current chapter will highlight different enzymes that are employed by bacteria to alter the properties of antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 15 January 2020

    In the original version of the book, the following corrections have been made:

References

  • Abril C, Brodard I, Perreten V (2010) Two novel antibiotic resistance genes, tet(44) and ant(6)-Ib, are located within a transferable pathogenicity island in Campylobacter fetus subsp. fetus. Antimicrob Agents Chemother 54:3052–3055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams MD, Goglin K, Molyneaux N, Hujer KM, Lavender H, Jamison JJ, MacDonald IJ, Martin KM, Russo T, Campagnari AA, Hujer AM, Bonomo RA, Gill SR (2008) Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii. J Bacteriol 190:8053–8064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed AM, Nakagawa T, Arakawa E, Ramamurthy T, Shinoda S, Shimamoto T (2004) New aminoglycoside acetyltransferase gene, aac(3)-Id, in a class 1 integron from a multiresistant strain of Vibrio fluvialis isolated from an infant aged 6 months. J Antimicrob Chemother 53:947–951. [PubMed: 15117923]

    Article  CAS  PubMed  Google Scholar 

  • Ainsa JA, Perez E, Pelicic V, Berthet FX, Gicquel B, Martin C (1997) Aminoglycoside 2′-Nacetyltransferase genes are universally present in mycobacteria: characterization of the aac(2′)-Ic gene from Mycobacterium tuberculosis and the aac(2′)-Id gene from Mycobacterium smegmatis. Mol Microbiol 24:431–441

    Article  CAS  PubMed  Google Scholar 

  • Ajiboye RM, Solberg OD, Lee BM, Raphael E, Debroy C, Riley LW (2009) Global spread of mobileantimicrobial drug resistance determinants in human and animal Escherichia coli and Salmonellastrains causing community-acquired infections. Clin Infect Dis 49:365–371

    Article  CAS  PubMed  Google Scholar 

  • Allmansberger R, Brau B, Piepersberg W (1985) Genes for gentamicin-(3)-N-acetyl-transferases III and IV. II. Nucleotide sequences of three AAC(3)-III genes and evolutionary aspects. Mol Gen Genet 198:514–520

    Article  CAS  PubMed  Google Scholar 

  • Beck E, Ludwig G, Auerswald EA, Reiss B, Schaller H (1982) Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19:327–336

    Article  CAS  PubMed  Google Scholar 

  • Berthold P, Schmitt R, Mages W (2002) An engineered Streptomyces hygroscopicus aph 7″ gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist 153:401–412. [PubMed: 12627869]

    Article  CAS  PubMed  Google Scholar 

  • Brau B, Pilz U, Piepersberg W (1984) Genes for gentamicin-(3)-N-acetyltransferases III and IV: I.Nucleotide sequence of the AAC(3)-IV gene and possible involvement of an IS140 element in itsexpression. Mol Gen Genet 193:179–187

    Article  CAS  PubMed  Google Scholar 

  • Call DR, Singer RS, Meng D, Broschat SL, Orfe LH, Anderson JM, Herndon DR, Kappmeyer LS, Daniels JB, Besser TE (2010) blaCMY-2-positive IncA/C plasmids from Escherichia coli and Salmonella enterica are a distinct component of a larger lineage of plasmids. Antimicrob Agents Chemother 54:590–596

    Article  CAS  PubMed  Google Scholar 

  • Cameron FH, Groot Obbink DJ, Ackerman VP, Hall RM (1986) Nucleotide sequence of the AAD(2″) aminoglycoside adenylyltransferase determinant aadB. Evolutionary relationship of this region with those surrounding aadA in R538-1 and dhfrII in R388. Nucleic Acids Res 14:8625–8615. [PubMed: 3024112]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casin I, Hanau-Bercot B, Podglajen I, Vahaboglu H, Collatz E (2003) Salmonella enterica serovarTyphimurium bla(PER-1)-carrying plasmid pSTI1 encodes an extendedspectrum aminoglycoside6′-N-acetyltransferase of type Ib. Antimicrob Agents Chemother 47:697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catherine Barnhart, PharmD, Ronald Campbell, PharmD, Lori Ann LaRosa, PharmD, Ann Marie Marr, PharmD, Amy Morgan, PharmD, Derek VanBerkom, PharmD (2002) Mechanisms of aminoglycoside resistance. http://www.uphs.upenn.edu/bugdrug/antibiotic_manual/aminoglycosideresistance.htm

  • Cerda P, Goni P, Millan L, Rubio C, Gomez-Lus R (2007) Detection of the aminoglycosidestreptothricin resistance gene cluster ant(6)-sat4-aph(3 ′)-III in commensal viridans group streptococci. Int Microbiol 10:57–60. [PubMed: 17407061]

    CAS  PubMed  Google Scholar 

  • Chen YG, Qu TT, Yu YS, Zhou JY, Li LJ (2006) Insertion sequence ISEcp1-like element connected with anovel aph(2′′) allele [aph(2′′)-Ie] conferring high-level gentamicin resistance and a novelstreptomycin adenylyltransferase gene in Enterococcus. J Med Microbiol 55:1521–1525

    Article  CAS  PubMed  Google Scholar 

  • Chen YT, Lauderdale TL, Liao TL, Shiau YR, Shu HY, Wu KM, Yan JJ, Su IJ, Tsai SF (2007) Sequencingand comparative genomic analysis of pK29, a 269-kilobase conjugative plasmid encoding CMY-8and CTX-M-3 β- lactamases in Klebsiella pneumoniae. Antimicrob Agents Chemother 51:3004–3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YT, Liao TL, Liu YM, Lauderdale TL, Yan JJ, Tsai SF (2009) Mobilization of qnrB2 and ISCR1 inplasmids. Antimicrob Agents Chemother 53:1235–1237. [PubMed: 19075060]

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Mediavilla JR, Smyth DS, Chavda KD, Ionescu R, Roberts RB, Robinson DA, Kreiswirth BN (2010) Identification of a novel transposon (Tn6072) and a truncated SCCmec element in methicillin-resistant Staphylococcus aureus ST239. Antimicrob Agents Chemother

    Google Scholar 

  • Chow JW, Kak V, You I, Kao SJ, Petrin J, Clewell DB, Lerner SA, Miller GH, Shaw KJ (2001) Aminoglycoside resistance genes aph(2′′)-Ib and aac(6′)-Im detected together in strains of both Escherichia coli and Enterococcus faecium. Antimicrob Agents Chemother 45:2691–2694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa Y, Galimand M, Leclercq R, Duval J, Courvalin P (1993) Characterization of the chromosomalaac(6′)-Ii gene specific for Enterococcus faecium. Antimicrob Agents Chemother 37:1896–1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crossman LC, Gould VC, Dow JM, Vernikos GS, Okazaki A, Sebaihia M, Saunders D, Arrowsmith C, Carver T, Peters N, Adlem E, Kerhornou A, Lord A, Murphy L, Seeger K, Squares R, Rutter S, Quail MA, Rajandream MA, Harris D, Churcher C, Bentley SD, Parkhill J, Thomson NR, Avison MB (2008) The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol 9:R74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dahmen S, Bettaieb D, Mansour W, Boujaafar N, Bouallegue O, Arlet G (2010) Characterization and molecular epidemiology of extended-spectrum β-lactamases in clinical isolates of Enterobacteriaceae in a Tunisian university hospital. Microb Drug Resist 16:163–170

    Article  CAS  PubMed  Google Scholar 

  • Daly M, Villa L, Pezzella C, Fanning S, Carattoli A (2005) Comparison of multidrug resistance gene regions between two geographically unrelated Salmonella serotypes. J Antimicrob Chemother 55:558–561

    Article  CAS  PubMed  Google Scholar 

  • Davies J (1994) Inactivation of antibiotics and the dissemination of resistance genes. Science 264:375–382

    Article  CAS  PubMed  Google Scholar 

  • Davies J, Wright G (1997) Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol 5:234–239

    Article  CAS  PubMed  Google Scholar 

  • Distler J, Ebert A, Mansouri K, Pissowotzki K, Stockmann M, Piepersberg W (1987) Gene cluster forstreptomycin biosynthesis in Streptomyces griseus: nucleotide sequence of three genes andanalysis of transcriptional activity. Nucleic Acids Res 15:8041–8056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doi Y, Wachino J, Yamane K, Shibata N, Yagi T, Shibayama K, Kato H, Arakawa Y (2004) Spread of novelaminoglycoside resistance gene aac(6′)-Iad among Acinetobacter clinical isolates in Japan. Antimicrob Agents Chemother 48:2075–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doublet B, Weill FX, Fabre L, Chaslus-Dancla E, Cloeckaert A (2004) Variant Salmonella genomic island 1 antibiotic resistance gene cluster containing a novel 3′-N-aminoglycoside acetyltransferase gene cassette, aac(3)-Id, in Salmonella enterica serovar newport. Antimicrob Agents Chemother 48:3806–3812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Draker KA, Northrop DB, Wright GD (2003) Kinetic mechanism of the GCN5-related chromosomalaminoglycoside acetyltransferase AAC(6′)-Ii from Enterococcus faecium: evidence of dimersubunit cooperativity. Biochemistry 42:6565–6574

    Article  CAS  PubMed  Google Scholar 

  • Dubois V, Arpin C, Dupart V, Scavelli A, Coulange L, Andre C, Fischer I, Grobost F, Brochet JP, Lagrange I, Dutilh B, Jullin J, Noury P, Larribet G, Quentin C (2008) β-lactam and aminoglycoside resistance rates and mechanisms among Pseudomonas aeruginosa in French general practice (community and private healthcare centres). J Antimicrob Chemother 62:316–323

    Article  CAS  PubMed  Google Scholar 

  • Džidić S, Å uÅ¡ković J, Kos B (2008) Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects. Food Technol Biotechnol 46(1):11–21

    Google Scholar 

  • Egorova S, Kaftyreva L, Grimont PA, Weill FX (2007) Prevalence and characterization of extended-spectrum cephalosporin-resistant nontyphoidal Salmonella isolates in adults in Saint Petersburg, Russia (2002-2005). Microb Drug Resist 13:102–107

    Article  CAS  PubMed  Google Scholar 

  • Faldynova M, Pravcova M, Sisak F, Havlickova H, Kolackova I, Cizek A, Karpiskova R, Rychlik I (2003) Evolution of antibiotic resistance in Salmonella enterica serovar typhimurium strains isolated in the Czech Republic between 1984 and 2002. Antimicrob Agents Chemother 47:2002–2005. [PubMed: 12760885]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes R, Amador P, Prudêncio C (2013) β-Lactams: chemical structure, mode of action and mechanisms of resistance. Rev Med Microbiol 24(1):7–17

    Article  Google Scholar 

  • Fernando J Oliveira P, Cipullo JP, Burdmann EA (2006) Aminoglycoside nephrotoxicity. Rev Bras Cir Cardiovasc. vol 21 no.4 São José do Rio Preto Oct./Dec. 2006

    Google Scholar 

  • Ferretti JJ, Gilmore KS, Courvalin P (1986) Nucleotide sequence analysis of the gene specifying the bifunctional 6′-aminoglycoside acetyltransferase 2″-aminoglycoside phosphotransferase enzyme in Streptococcus faecalis and identification and cloning of gene regions specifying the two activities. J Bacteriol 167:631–638. [PubMed: 3015884]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiett J, Baraniak A, Mrowka A, Fleischer M, Drulis-Kawa Z, Naumiuk L, Samet A, Hryniewicz W, Gniadkowski M (2006) Molecular epidemiology of acquired-metallo-β-lactamase-producing bacteria in Poland. Antimicrob Agents Chemother 50:880–886. [PubMed: 16495246]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frere JM (1995) β-Lactamases and bacterial resistance to antibiotics. Mol Microbiol 16:385–395

    Article  CAS  PubMed  Google Scholar 

  • Gaynes R, Groisman E, Nelson E, Casadaban M, Lerner SA (1988) Isolation, characterization, and cloning of a plasmid-borne gene encoding a phosphotransferase that confers high-level amikacin resistance in enteric bacilli. Antimicrob Agents Chemother 32:1379–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SR, Fouts DE, Archer GL, Mongodin EF, Deboy RT, Ravel J, Paulsen IT, Kolonay JF, Brinkac L, Beanan M, Dodson RJ, Daugherty SC, Madupu R, Angiuoli SV, Durkin AS, Haft DH, Vamathevan J, Khouri H, Utterback T, Lee C, Dimitrov G, Jiang L, Qin H, Weidman J, Tran K, Kang K, Hance IR, Nelson KE, Fraser CM (2005) Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol 187:2426–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gionechetti F, Zucca P, Gombac F, Monti-Bragadin C, Lagatolla C, Tonin E, Edalucci E, Vitali LA, Dolzani L (2008) Characterization of antimicrobial resistance and class 1 integrons in Enterobacteriaceae isolated from Mediterranean herring gulls (Larus cachinnans). Microb Drug Resist 14:93–99

    Article  CAS  PubMed  Google Scholar 

  • Gordon L, Cloeckaert A, Doublet B, Schwarz S, Bouju-Albert A, Ganiere JP, Le Bris H, Le Fleche-Mateos A, Giraud E (2008) Complete sequence of the floR-carrying multiresistance plasmid pAB5S9 from freshwater Aeromonas bestiarum. J Antimicrob Chemotheri 62:65–71

    Article  CAS  Google Scholar 

  • Happi CT, Gbotosho GO, Folarin OA, Akinboye DO, Yusuf BO, Ebong OO, Sowunmi A, Kyle DE, Milhous W, Wirth DT, Oduola AMJ (2005) Polymorphisms in Plasmodium falciparum dhfr and dhps genes and age related in vivo sulfadoxine-pyrimethamine resistance in malaria-infected patients from Nigeria. Acta Trop 95:183–193

    Article  CAS  PubMed  Google Scholar 

  • Herbert CJ, Giles IG, Akhtar M (1983) The sequence of an antibiotic resistance gene from an antibiotic-producing bacterium. Homologies with transposon genes. FEBS Lett 160:67–71

    Article  CAS  PubMed  Google Scholar 

  • Herrero A, Rodicio MR, Echeita MA, Mendoza MC (2008) Salmonella enterica serotype Typhimuriumcarrying hybrid virulence-resistance plasmids (pUO-StVR): a new multidrug-resistant groupendemic in Spain. Int J Med Microbiol 298:253–261

    Article  CAS  PubMed  Google Scholar 

  • Heuer H, Krogerrecklenfort E, Wellington EM, Egan S, Elsas JD, Overbeek L, Collard JM, Guillaume G, Karagouni AD, Nikolakopoulou TL, Smalla K (2002) Gentamicin resistance genes in environmental bacteria: prevalence and transfer. FEMS Microbiol Ecol 42:289–302

    Article  CAS  PubMed  Google Scholar 

  • Holden MT, Hauser H, Sanders M, Ngo TH, Cherevach I, Cronin A, Goodhead I, Mungall K, Quail MA, Price C, Rabbinowitsch E, Sharp S, Croucher NJ, Chieu TB, Mai NT, Diep TS, Chinh NT, Kehoe M, Leigh JA, Ward PN, Dowson CG, Whatmore AM, Chanter N, Iversen P, Gottschalk M, Slater JD, Smith HE, Spratt BG, Xu J, Ye C, Bentley S, Barrell BG, Schultsz C, Maskell DJ, Parkhill J (2009) Rapid evolution of virulence and drug resistance in the emerging zoonotic pathogen Streptococcus suis. PLoS One 4:e6072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hollingshead S, Vapnek D (1985) Nucleotide sequence analysis of a gene encoding a streptomycin/spectinomycin adenylyltransferase. Plasmid 13:17–30. [PubMed: 2986186]

    Article  CAS  PubMed  Google Scholar 

  • Hoshiko S, Nojiri C, Matsunaga K, Katsumata K, Satoh E, Nagaoka K (1988) Nucleotide sequence of the ribostamycin phosphotransferase gene and of its control region in Streptomyces ribosidificus. Gene 68:285–296

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa J, Sunada A, Oyama R, Hotta K (2000) Identification and characterization of the point mutation which affects the transcription level of the chromosomal 3-N-acetyltransferase gene of Streptomyces griseus SS-1198. Antimicrob Agents Chemother 44:437–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacoby GA, Blaser MJ, Santanam P, Hachler H, Kayser FH, Hare RS, Miller GH (1990) Appearance of amikacin and tobramycin resistance due to 4′-aminoglycoside nucleotidyltransferase [ANT(4′)-II] in gram-negative pathogens. Antimicrob Agents Chemother 34:2381–2386. [PubMed:1965106]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javier TF, Alvarez M, Suarez JE, Mendoza MC (1991) Characterization of two aminoglycoside-(3)-N-acetyltransferase genes and assay as epidemiological probes. J Antimicrob Chemother 28:333–346

    Article  Google Scholar 

  • Kao SJ, You I, Clewell DB, Donabedian SM, Zervos MJ, Petrin J, Shaw KJ, Chow JW (2000) Detection ofthe high-level aminoglycoside resistance gene aph(2′′)-Ib in Enterococcus faecium. Antimicrob Agents Chemother 44:2876–2879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaster KR, Burgett SG, Rao RN, Ingolia TD (1983) Analysis of a bacterial hygromycin B resistance gene bytranscriptional and translational fusions and by DNA sequencing. Nucleic Acids Res 11:6895–6911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kehrenberg C, Catry B, Haesebrouck F, de Kruif A, Schwarz S (2005) Novel spectinomycin/streptomycin resistance gene, aadA14, from Pasteurella multocida. Antimicrob Agents Chemother 49:3046–3049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kernodle DOS (2006) Mechanisms of resistance to β-lactam antibiotics. In: Fischetti VA et al (eds) Gram-positive pathogens, 2nd edn. ASM Press, Washington, DC

    Google Scholar 

  • Kitao T, Miyoshi-Akiyama T, Kirikae T (2009) AAC(6′)-Iaf, a novel aminoglycoside 6′-N-acetyltransferase from multidrug-resistant Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 53:2327–2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Schweizer HP (2005) Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev 57:1486–1513

    Article  CAS  PubMed  Google Scholar 

  • Lambert PA (2005) Bacterial resistance to antibiotics: modified target sites. Adv Drug Deliv Rev 57:1471–1485

    Article  CAS  PubMed  Google Scholar 

  • Lambert T, Gerbaud G, Galimand M, Courvalin P (1993) Characterization of Acinetobacter haemolyticus aac(6′)-Ig gene encoding an aminoglycoside 6′-N-acetyltransferase which modifies amikacin. Antimicrob Agents Chemother 37:2093–2100. [PubMed: 8257129]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert T, Gerbaud G, Courvalin P (1994a) Characterization of the chromosomal aac(6′)-Ij gene of Acinetobacter sp. 13 and the aac(6′)-Ih plasmid gene of Acinetobacter baumannii. Antimicrob Agents Chemother 38:1883–1889. [PubMed: 7810994]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert T, Ploy MC, Courvalin P (1994b) A spontaneous point mutation in the aac(6′)-Ib’ gene results in altered substrate specificity of aminoglycoside 6′-N-acetyltransferase of a Pseudomonas fluorescens strain. FEMS Microbiol Lett 115:297–304. [PubMed: 8138142]

    CAS  PubMed  Google Scholar 

  • LeBlanc DJ, Lee LN, Inamine JM (1991) Cloning and nucleotide base sequence analysis of a spectinomycinadenyltransferase AAD(9) determinant from Enterococcus faecalis. Antimicrob Agents Chemother 35:1804–1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KY, Hopkins JD, Syvanen M (1990) Direct involvement of IS26 in an antibiotic resistance operon. J Bacteriol 172:3229–3236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levings RS, Partridge SR, Lightfoot D, Hall RM, Djordjevic SP (2005) New integron-associated gene cassette encoding a 3-N-aminoglycoside acetyltransferase. Antimicrob Agents Chemother 49:1238–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livermore DM (2003) Bacterial resistance: origins, epidemiology and impact. Clin Infect Dis 36:11–23

    Article  Google Scholar 

  • Llanes C, Neuwirth C, El Garch F, Hocquet D, Plesiat P (2006) Genetic analysis of a multiresistant strain of Pseudomonas aeruginosa producing PER-1 β-lactamase. Clin Microbiol Infect 12:270–278

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Cabrera M, Perez-Gonzalez JA, Heinzel P, Piepersberg W, Jimenez A (1989) Isolation and nucleotide sequencing of an aminocyclitol acetyltransferase gene from Streptomyces rimosus forma paromomycinus. J Bacteriol 171:321–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyutzkanova D, Distler J, Altenbuchner J (1997) A spectinomycin resistance determinant from the spectinomycin producer Streptomyces flavopersicus. Microbiology 143(Pt7):2135–2143

    Article  CAS  PubMed  Google Scholar 

  • Magnet S, Blanchard JS (2005) Molecular insights into aminoglycoside action and resistance. Chem Rev 105:477–498

    Article  CAS  PubMed  Google Scholar 

  • Martin P, Jullien E, Courvalin P (1988) Nucleotide sequence of Acinetobacter baumannii aphA-6 gene:evolutionary and functional implications of sequence homologies with nucleotide-bindingproteins, kinases and other aminoglycoside-modifying enzymes. Mol Microbiol 2:615–625

    Article  CAS  PubMed  Google Scholar 

  • Massova I, Mobashery S (1998) Kinship and diversification of bacterial penicillin-binding proteins and β- lactamases. Antimicrob Agents Chemother 42:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazodier P, Cossart P, Giraud E, Gasser F (1985) Completion of the nucleotide sequence of the centralregion of Tn5 confirms the presence of three resistance genes. Nucleic Acids Res 13:195–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes R, Toleman M, Ribeiro J, Sader H, Jones R, Walsh T (2004) Integron carrying a novel metallo-b-lactamase gene, blaIMP-16, and a fused form of aminoglycoside-resistance gene aac(6′)-30/aac(6′)-Ib: report from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother 48:4693–4702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer R (2009) Replication and conjugative mobilization of broad host-range IncQ plasmids. Plasmid 62:57–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michael GB, Cardoso M, Schwarz S (2005) Class 1 integron-associated gene cassettes in Salmonella entericasubsp. enterica serovar Agona isolated from pig carcasses in Brazil. J Antimicrob Chemother 55:776–779

    Article  CAS  PubMed  Google Scholar 

  • Miller WR, Munita JM, Arias CA (2014) Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti-Infect Ther 12(10):1221–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mingeot-Leclercq MP, Glupczynski Y, Tulkens PM (1999) Aminoglycosides: activity and resistance. Antimicrob Agents Chemother 43(4):727–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mobashery S, Azucena EF (1999) Bacterial antibiotic resistance. In: Encyclopedia of life sciences. Nature Publishing Group, London. http://www.els.net

  • Mortazavi SMJ, Darvish L, Abounajmi M, Zarei S, Zare T, Taheri M, Nematollahi S (2015) Alteration of bacterial antibiotic sensitivity after short-term exposure to diagnostic ultrasound. Iran Red Crescent Med J 17(11):e26622

    Article  PubMed  PubMed Central  Google Scholar 

  • Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. Microbiol Spectr 4(2)

    Google Scholar 

  • Murphy E (1985) Nucleotide sequence of a spectinomycin adenyltransferase AAD(9) determinant from Staphylococcus aureus and its relationship to AAD(3′′) (9). Mol Gen Genet 200:33–39

    Article  CAS  PubMed  Google Scholar 

  • Nobuta K, Tolmasky ME, Crosa LM, Crosa JH (1988) Sequencing and expression of the 6′-Nacetyltransferase gene of transposon Tn1331 from Klebsiella pneumoniae. J Bacteriol 170:3769–3773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguchi N, Sasatsu M, Kono M (1993) Genetic mapping in Bacillus subtilis 168 of the aadK gene whichencodes aminoglycoside 6-adenylyltransferase. FEMS Microbiol Lett 114:47–52

    Article  CAS  PubMed  Google Scholar 

  • Ohmiya K, Tanaka T, Noguchi N, O’Hara K, Kono M (1989) Nucleotide sequence of the chromosomal genecoding for the aminoglycoside 6-adenylyltransferase from Bacillus subtilis Marburg 168. Gene 78:377–378

    Article  CAS  PubMed  Google Scholar 

  • Oka A, Sugisaki H, Takanami M (1981) Nucleotide sequence of the kanamycin resistance transposon Tn903. J Mol Biol 147:217–226

    Article  CAS  PubMed  Google Scholar 

  • Okazaki A, Avison MB (2007) Aph(3′)-IIc, an aminoglycoside resistance determinant from Stenotrophomonas maltophilia. Antimicrob Agents Chemother 51:359–360. [PubMed:74

    Article  CAS  PubMed  Google Scholar 

  • Pansegrau W, Miele L, Lurz R, Lanka E (1987) Nucleotide sequence of the kanamycin resistance determinant of plasmid RP4: homology to other aminoglycoside 3′-phosphotransferases. Plasmid 18:193–204

    Article  CAS  PubMed  Google Scholar 

  • Parent R, Roy PH (1992) The chloramphenicol acetyltransferase gene of Tn2424: a new breed of cat. J Bacteriol 174:2891–2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, Holden MT, Churcher CM, Bentley SD, Mungall KL, Cerdeno-Tarraga AM, Temple L, James K, Harris B, Quail MA, Achtman M, Atkin R, Baker S, Basham D, Bason N, Cherevach I, Chillingworth T, Collins M, Cronin A, Davis P, Doggett J, Feltwell T, Goble A, Hamlin N, Hauser H, Holroyd S, Jagels K, Leather S, Moule S, Norberczak H, O’Neil S, Ormond D, Price C, Rabbinowitsch E, Rutter S, Sanders M, Saunders D, Seeger K, Sharp S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Unwin L, Whitehead S, Barrell BG, Maskell DJ (2003) Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35:32–40. [PubMed: 12910271]

    Article  PubMed  Google Scholar 

  • Partridge SR, Collis CM, Hall RM (2002) Class 1 integron containing a new gene cassette, aadA10, associated with Tn1404 from R151. Antimicrob Agents Chemother 46:2400–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawlowski AC, Johnson JW, Wright GD (2016) Evolving medicinal chemistry strategies in antibiotic discovery. Curr Opin Biotechnol 42:108–117

    Article  CAS  PubMed  Google Scholar 

  • Perichon B, Bogaerts P, Lambert T, Frangeul L, Courvalin P, Galimand M (2008) Sequence of conjugative plasmid pIP1206 mediating resistance to aminoglycosides by 16S rRNA methylation and to hydrophilic fluoroquinolones by efflux. Antimicrob Agents Chemother 52:2581–2592. [PubMed: 18458128]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez MS, Tolmasky ME (2010) Aminoglycoside modifying enzymes. Drug Resist Updat 13(6):151–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramon-Garcia S, Otal I, Martin C, Gomez-Lus R, Ainsa JA (2006) Antibiotics of aminoglycosides. Antimicrob Agents Chemother 50:3920–3922. [PubMed:16954315]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rather PN, Munayyer H, Mann PA, Hare RS, Miller GH, Shaw KJ (1992) Genetic analysis of bacterialacetyltransferases: identification of amino acids determining the specificities of theaminoglycoside 6′-N-acetyltransferase Ib and IIa proteins. J Bacteriol 174:3196–3203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rather PN, Mann PA, Mierzwa R, Hare RS, Miller GH, Shaw KJ (1993) Analysis of the aac(3)-VIa gene encoding a novel 3-N-acetyltransferase. Antimicrob Agents Chemother 37:2074–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revilla C, Garcillan-Barcia MP, Fernandez-Lopez R, Thomson NR, Sanders M, Cheung M, Thomas CM, de la Cruz F (2008) Different pathways to acquiring resistance genes illustrated by the recentevolution of IncW plasmids. Antimicrob Agents Chemother 52:1472–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riccio ML, Docquier JD, Dell’Amico E, Luzzaro F, Amicosante G, Rossolini GM (2003) Novel 3-Naminoglycoside acetyltransferase gene, aac(3)-Ic, from a Pseudomonas aeruginosa integron. Antimicrob Agents Chemother 47:1746–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH, Bush K, Hooper DC (2006) Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 12:83–88. [PubMed: 16369542]

    Article  CAS  PubMed  Google Scholar 

  • Rouch DA, Byrne ME, Kong YC, Skurray RA (1987) The aacA-aphD gentamicin and kanamycin resistance determinant of Tn4001 from Staphylococcus aureus: expression and nucleotide sequence analysis. J Gen Microbiol 133:3039–3052. [PubMed: 2833561]

    CAS  PubMed  Google Scholar 

  • Sabtcheva S, Galimand M, Gerbaud G, Courvalin P, Lambert T (2003) Aminoglycoside resistance geneant(4′)-IIb of Pseudomonas aeruginosa BM4492, a clinical isolate from Bulgaria. Antimicrob Agents Chemother 47:1584–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salauze D, Perez-Gonzalez JA, Piepersberg W, Davies J (1991) Characterisation of aminoglycoside acetyltransferase-encoding genes of neomycin-producing Micromonospora chalcea and Streptomyces fradiae. Gene 101:143–148

    Article  CAS  PubMed  Google Scholar 

  • Sandvang D (1999) Novel streptomycin and spectinomycin resistance gene as a gene cassette within a class 1integron isolated from Escherichia coli. Antimicrob Agents Chemother 43:3036–3038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholz P, Haring V, Wittmann-Liebold B, Ashman K, Bagdasarian M, Scherzinger E (1989) Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSF1010. Gene 75:271–288

    Article  CAS  PubMed  Google Scholar 

  • Schwarz FV, Perreten V, Teuber M (2001) Sequence of the 50-kb conjugative multiresistance plasmidpRE25 from Enterococcus faecalis RE25. Plasmid 46:170–187

    Article  CAS  PubMed  Google Scholar 

  • Schwocho LR, Schaffner CP, Miller GH, Hare RS, Shaw KJ (1995) Cloning and characterization of a 3-N-aminoglycoside acetyltransferase gene, aac(3)-Ib, from Pseudomonas aeruginosa. Antimicrob Agents Chemother 39:1790–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekiguchi J, Asagi T, Miyoshi-Akiyama T, Fujino T, Kobayashi I, Morita K, Kikuchi Y, Kuratsuji T, Kirikae T (2005) Multidrug-resistant Pseudomonas aeruginosa strain that caused an outbreak in a neurosurgery ward and its aac(6′)-Iae gene cassette encoding a novel aminoglycoside acetyltransferase. Antimicrob Agents Chemother 49:3734–3742. [PubMed: 16127047]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw KJ, Cramer CA, Rizzo M, Mierzwa R, Gewain K, Miller GH, Hare RS (1989) Isolation, characterization, and DNA sequence analysis of an AAC(6′)-II gene from Pseudomonas aeruginosa. Antimicrob Agents Chemother 33:2052–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw KJ, Rather PN, Sabatelli FJ, Mann P, Munayyer H, Mierzwa R, Petrikkos GL, Hare RS, Miller GH, Bennett P et al (1992) Characterization of the chromosomal aac(6′)-Ic gene from Serratia marcescens. Antimicrob Agents Chemother 36:1447–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw KJ, Rather PN, Hare RS, Miller GH (1993) Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 57:138–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiniger-White M, Rayment I, Reznikoff WS (2004) Structure/function insights into Tn5 transposition. Curr Opin Struct Biol 14:50–57

    Article  CAS  PubMed  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  CAS  PubMed  Google Scholar 

  • Suter TM, Viswanathan VK, Cianciotto NP (1997) Isolation of a gene encoding a novel spectinomycin phosphotransferase from Legionella pneumophila. Antimicrob Agents Chemother 41:1385–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tauch A, Krieft S, Kalinowski J, Puhler A (2000) The 51,409-bp R-plasmid pTP10 from the multiresistantclinical isolate Corynebacterium striatum M82B is composed of DNA segments initiallyidentified in soil bacteria and in plant, animal, and human pathogens. Mol Gen Genet 263:1–11

    Article  CAS  PubMed  Google Scholar 

  • Tauch A, Gotker S, Puhler A, Kalinowski J, Thierbach G (2002) The 27.8-kb R-plasmid pTET3 from Corynebacterium glutamicum encodes the aminoglycoside adenyltransferase gene cassette aadA9 and the regulated tetracycline efflux system Tet 33 flanked by active copies of the widespread insertion sequence IS6100. Plasmid 48:117–129

    Article  CAS  PubMed  Google Scholar 

  • Tennstedt T, Szczepanowski R, Braun S, Puhler A, Schluter A (2003) Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewatertreatment plant. FEMS Microbiol Ecol 45:239–252

    Article  CAS  PubMed  Google Scholar 

  • Tenover FC (2001) Development and spread of bacterial resistance to antimicrobial agents: an overview. Clin Infect Dis (Suppl) 33:108–115

    Article  Google Scholar 

  • Tenover FC, Filpula D, Phillips KL, Plorde JJ (1988) Cloning and sequencing of a gene encoding an aminoglycoside 6′-N-acetyltransferase from an R factor of Citrobacter diversus. J Bacteriol 170:471–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tenover FC, Gilbert T, O’Hara P (1989) Nucleotide sequence of a novel kanamycin resistance gene, aphA-7, from campylobacter jejuni and comparison to other kanamycin phosphotransferase genes. Plasmid 22:52–58

    Article  CAS  PubMed  Google Scholar 

  • Teran FJ, Suarez JE, Mendoza MC (1991) Cloning, sequencing, and use as a molecular probe of a geneencoding an aminoglycoside 6′-N-acetyltransferase of broad substrate profile. Antimicrob AgentsChemother 35:714–719

    Article  CAS  Google Scholar 

  • Thompson CJ, Gray GS (1983) Nucleotide sequence of a streptomycete aminoglycoside phosphotransferasegene and its relationship to phosphotransferases encoded by resistance plasmids. Proc Natl Acad Sci U S A 80:5190–5194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolmasky ME (1990) Sequencing and expression of aadA, bla, and tnpR from the multiresistance transposonTn1331. Plasmid 24:218–226

    Article  CAS  PubMed  Google Scholar 

  • Trieu-Cuot P, Courvalin P (1983) Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3′5″-aminoglycoside phosphotransferase type III. Gene 23:331–341

    Article  CAS  PubMed  Google Scholar 

  • Trower MK, Clark KG (1990) PCR cloning of a streptomycin phosphotransferase (aphE) gene from Streptomyces griseus ATCC 12475. Nucleic Acids Res 18:4615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai SF, Zervos MJ, Clewell DB, Donabedian SM, Sahm DF, Chow JW (1998) A new high-level gentamicin resistance gene, aph(2″)-Id, in Enterococcus spp. Antimicrob Agents Chemother 42:1229–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vliegenthart JS, Ketelaar-van Gaalen PA, Eelhart J, van de Klundert JA (1991) Localisation of the aminoglycoside-(3)-N-acetyltransferase isoenzyme II in Escherichia coli. FEMS Microbiol Lett 65:101–105

    Article  CAS  PubMed  Google Scholar 

  • Vogtli M, Hutter R (1987) Characterisation of the hydroxystreptomycin phosphotransferase gene (sph) of Streptomyces glaucescens: nucleotide sequence and promoter analysis. Mol Gen Genet 208:195–203

    Article  CAS  PubMed  Google Scholar 

  • Walsh C (2000) Molecular mechanisms that confer antibacterial drug resistance. Nature 406:775–781

    Article  CAS  PubMed  Google Scholar 

  • Walsh C (2003) Antibiotics, action, origins and resistance. ASM Press, Washington, D.C.

    Book  Google Scholar 

  • Wei Q, Jiang X, Yang Z, Chen N, Chen X, Li G, Lu Y (2009) dfrA27, a new integron-associatedtrimethoprim resistance gene from Escherichia coli. J Antimicrob Chemother 63:405–406

    Article  CAS  PubMed  Google Scholar 

  • Wilson NL, Hall RM (2010) Unusual class 1 integron configuration found in Salmonella genomic island 2from Salmonella enterica serovar Emek. Antimicrob Agents Chemother 54:513–516

    Article  CAS  PubMed  Google Scholar 

  • Wohlleben W, Arnold W, Bissonnette L, Pelletier A, Tanguay A, Roy PH, Gamboa GC, Barry GF, Aubert E, Davies J et al (1989) On the evolution of Tn21-like multiresistance transposons: sequence analysis of the gene (aacC1) for gentamicin acetyltransferase-3-I(AAC(3)-I), another member of the Tn21-based expression cassette. Mol Gen Genet 217:202–208

    Article  CAS  PubMed  Google Scholar 

  • Wright GD (2005) Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev 57:1451–1470

    Article  CAS  PubMed  Google Scholar 

  • Wybenga-Groot LE, Draker K, Wright GD, Berghuis AM (1999) Crystal structure of an aminoglycoside 6′-N-acetyltransferase: defining the GCN5-related N-acetyltransferase superfamily fold. Structure 7:497–507

    Article  CAS  PubMed  Google Scholar 

  • Yan JJ, Hsueh PR, Lu JJ, Chang FY, Ko WC, Wu JJ (2006) Characterization of acquired β-lactamases andtheir genetic support in multidrug-resistant Pseudomonas aeruginosa isolates in Taiwan: theprevalence of unusual integrons. J Antimicrob Chemother 58:530–536

    Article  CAS  Google Scholar 

  • Zalacain M, Gonzalez A, Guerrero MC, Mattaliano RJ, Malpartida F, Jimenez A (1986) Nucleotide sequence of the hygromycin B phosphotransferase gene from Streptomyces hygroscopicus. Nucleic Acids Res 14:1565–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sagar, S., Kaistha, S., Das, A.J., Kumar, R. (2019). Chemical-Mediated Alteration of Antibiotics. In: Antibiotic Resistant Bacteria: A Challenge to Modern Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-9879-7_8

Download citation

Publish with us

Policies and ethics