Skip to main content

Multi-objective Trajectory Optimization Problem

  • Chapter
  • First Online:
  • 727 Accesses

Part of the book series: Springer Aerospace Technology ((SAT))

Abstract

In this chapter, the SMV trajectory optimization problem established in the previous chapter is reformulated and extended to a multi-objective continuous-time optimal control model. Because of the discontinuity or nonlinearity in the vehicle dynamics and mission objectives, it is challenging to generate a compromised trajectory that can satisfy constraints and optimize objectives. To effectively analyze the relationships between objectives and calculate the Pareto front, this chapter constructs a multi-objective optimal control solver based on the evolutionary multi-objective optimization. A dominance relationship criterion based on violation degree is also defined and used to select the new generation. Simulation results are provided to illustrate the effectiveness and feasibility of the proposed algorithm in dealing with the multi-objective SMV trajectory optimization problems. Furthermore, in order to take into account the preference requirements, different transformation techniques are also proposed and the original problem is then transcribed to a single-objective formulation. These techniques are discussed in detail in the following sections. Numerical simulations were carried out and the results indicate that the constructed strategies are effective and can provide compromised solutions for solving the multi-objective SMV trajectory design problem with the consideration of preference constraints.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Huang, C.H., Galuski, J., Bloebaum, C.L.: Multi-objective pareto concurrent subspace optimization for multidisciplinary design. AIAA J. 45(8), 1894–1906 (2007). https://doi.org/10.2514/1.19972

    Article  Google Scholar 

  2. Azizipanah-Abarghooee, R., Terzija, V., Golestaneh, F., Roosta, A.: Multiobjective dynamic optimal power flow considering fuzzy-based smart utilization of mobile electric vehicles. IEEE Trans. Ind. Inform. 12(2), 503–514 (2016). https://doi.org/10.1109/TII.2016.2518484

    Article  Google Scholar 

  3. Shen, Y., Wang, Y.: Operating point optimization of auxiliary power unit using adaptive multi-objective differential evolution algorithm. IEEE Trans. Ind. Electron. 64(1), 115–124 (2017). https://doi.org/10.1109/TIE.2016.2598674

    Article  Google Scholar 

  4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  5. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602–622 (2014). https://doi.org/10.1109/TEVC.2013.2281534

    Article  Google Scholar 

  6. Kukkonen, S., Deb, K.: Improved pruning of non-dominated solutions based on crowding distance for bi-objective optimization problems. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 1179–1186 (2006). https://doi.org/10.1109/CEC.2006.1688443

  7. Hamza, N.M., Essam, D.L., Sarker, R.A.: Constraint consensus mutation-based differential evolution for constrained optimization. IEEE Trans. Evol. Comput. 20(3), 447–459 (2016). https://doi.org/10.1109/TEVC.2015.2477402

    Article  Google Scholar 

  8. Ji, B., Yuan, X., Yuan, Y.: Modified NSGA-II for solving continuous berth allocation problem: using multiobjective constraint-handling strategy. IEEE Trans. Cybern. 47(9), 2885–2895 (2017). https://doi.org/10.1109/TCYB.2017.2669334

    Article  Google Scholar 

  9. Bosman, P.A.N.: On gradients and hybrid evolutionary algorithms for real-valued multiobjective optimization. IEEE Trans. Evol. Comput. 16(1), 51–69 (2012). https://doi.org/10.1109/TEVC.2010.2051445

    Article  Google Scholar 

  10. Chen, B., Zeng, W., Lin, Y., Zhang, D.: A new local search-based multiobjective optimization algorithm. IEEE Trans. Evol. Comput. 19(1), 50–73 (2015). https://doi.org/10.1109/TEVC.2014.2301794

    Article  Google Scholar 

  11. Hu, W., Yen, G.G., Luo, G.: Many-objective particle swarm optimization using two-stage strategy and parallel cell coordinate system. IEEE Trans. Cybern. 47(6), 1446–1459 (2017). https://doi.org/10.1109/TCYB.2016.2548239

    Article  Google Scholar 

  12. Jiang, S., Yang, S.: Evolutionary dynamic multiobjective optimization: benchmarks and algorithm comparisons. IEEE Trans. Cybern. 47(1), 198–211 (2017). https://doi.org/10.1109/TCYB.2015.2510698

    Article  MathSciNet  Google Scholar 

  13. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014). https://doi.org/10.1109/TEVC.2013.2281535

    Article  Google Scholar 

  14. Chai, R., Savvaris, A., Tsourdos, A., Xia, Y.: An interactive fuzzy physical programming for skip entry problem. IEEE Trans. Aerosp. Electron. Syst. 53(5), 2385–2398 (2017). https://doi.org/10.1109/TAES.2017.2696281

    Article  Google Scholar 

  15. Tappeta, R.V., Renaud, J.E., Messac, A., Sundararaj, G.J.: Interactive physical programming: tradeoff analysis and decision making in multicriteria optimization. AIAA J. 38(5), 917–926 (2000). https://doi.org/10.2514/2.1048

    Article  Google Scholar 

  16. Lin, K.P., Luo, Y.Z., Tang, G.J.: Multi-objective optimization of space station logistics strategies using physical programming. Eng. Optim. 47(8), 1140–1155 (2015). https://doi.org/10.1080/0305215X.2014.954568

    Article  MathSciNet  Google Scholar 

  17. Chai, R., Savvaris, A., Tsourdos, A.: Fuzzy physical programming for space manoeuvre vehicles trajectory optimization based on hp-adaptive pseudospectral method. Acta Astronaut. 123, 62–70 (2016). https://doi.org/10.1016/j.actaastro.2016.02.020

    Article  Google Scholar 

  18. Shi, P., Su, X., Li, F.: Dissipativity-based filtering for fuzzy switched systems with stochastic perturbation. IEEE Trans. Autom. Control 61(6), 1694–1699 (2016). https://doi.org/10.1109/TAC.2015.2477976

    Article  MathSciNet  MATH  Google Scholar 

  19. Shi, P., Zhang, Y., Chadli, M., Agarwal, R.K.: Mixed H-infinity and passive filtering for discrete fuzzy neural networks with stochastic jumps and time delays. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 903–909 (2016). https://doi.org/10.1109/TNNLS.2015.2425962

    Article  MathSciNet  Google Scholar 

  20. Chai, R., Savvaris, A., Tsourdos, A., Chai, S., Xia, Y.: Unified multiobjective optimization scheme for aeroassisted vehicle trajectory planning. J. Guid. Control Dyn. 41(7), 1521–1530 (2018). https://doi.org/10.2514/1.G003189

    Article  Google Scholar 

  21. Hu, C.F., Teng, C.J., Li, S.Y.: A fuzzy goal programming approach to multi-objective optimization problem with priorities. Eur. J. Oper. Res. 176(3), 1319–1333 (2007). https://doi.org/10.1016/j.ejor.2005.10.049

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, S., Hu, C.: Two-step interactive satisfactory method for fuzzy multiple objective optimization with preemptive priorities. IEEE Trans. Fuzzy Syst. 15(3), 417–425 (2007). https://doi.org/10.1109/TFUZZ.2006.887463

    Article  Google Scholar 

  23. Chai, R., Savvaris, A., Tsourdos, A., Chai, S.: Multi-objective trajectory optimization of space manoeuvre vehicle using adaptive differential evolution and modified game theory. Acta Astronaut. 136, 273–280 (2017). https://doi.org/10.1016/j.actaastro.2017.02.023

    Article  Google Scholar 

  24. Zhang, H.: A goal programming model of obtaining the priority weights from an interval preference relation. Inf. Sci. 354(Supplement C), 197–210 (2016). https://doi.org/10.1016/j.ins.2016.03.015

    Article  Google Scholar 

  25. Chai, R., Savvaris, A., Tsourdos, A., Chai, S., Xia, Y.: Improved gradient-based algorithm for solving aeroassisted vehicle trajectory optimization problems. J. Guid. Control Dyn. 40(8), 2093–2101 (2017). https://doi.org/10.2514/1.G002183

    Article  Google Scholar 

  26. Chai, R., Savvaris, A., Tsourdos, A., Chai, S.: Solving multi-objective aeroassisted spacecraft trajectory optimization problems using extended NSGA-II. In: AIAA SPACE Forum. American Institute of Aeronautics and Astronautics (2017). https://doi.org/10.2514/6.2017-5193

  27. Liu, X., Kumar, K.D.: Network-based tracking control of spacecraft formation flying with communication delays. IEEE Trans. Aerosp. Electron. Syst. 48(3), 2302–2314 (2012). https://doi.org/10.1109/TAES.2012.6237593

    Article  Google Scholar 

  28. Liu, G., Zhang, S.: A survey on formation control of small satellites. Proc. IEEE 106(3), 440–457 (2018). https://doi.org/10.1109/JPROC.2018.2794879

    Article  Google Scholar 

  29. Kristiansen, R., Nicklasson, P.J.: Spacecraft formation flying: a review and new results on state feedback control. Acta Astronaut. 65(11), 1537–1552 (2009). https://doi.org/10.1016/j.actaastro.2009.04.014

    Article  Google Scholar 

  30. Pettazzi, L., Kruger, H., Theil, S., Izzo, D.: Electrostatic force for swarm navigation and reconfiguration. Acta Futur. 4, 80–86 (2008)

    Google Scholar 

  31. Petit, N., Milam, M., Murray, R.: Constrained trajectory generation for micro-satellite formation flying. In: Guidance, Navigation, and Control and Co-located Conferences. American Institute of Aeronautics and Astronautics (2001). https://doi.org/10.2514/6.2001-4030

  32. Kim, Y., Mesbahi, M., Hadaegh, F.Y.: Dual-spacecraft formation flying in deep space: optimal collision-free reconfigurations. J. Guid. Control Dyn. 26(2), 375–379 (2003). https://doi.org/10.2514/2.5059

    Article  Google Scholar 

  33. Chawla, C., Sarmah, P., Padhi, R.: Suboptimal reentry guidance of a reusable launch vehicle using pitch plane maneuver. Aerosp. Sci. Technol. 14(6), 377–386 (2010). https://doi.org/10.1016/j.ast.2010.04.001

    Article  Google Scholar 

  34. Tian, B., Zong, Q.: Optimal guidance for reentry vehicles based on indirect Legendre pseudospectral method. Acta Astronaut. 68(7), 1176–1184 (2011). https://doi.org/10.1016/j.actaastro.2010.10.010

    Article  Google Scholar 

  35. Xia, Y., Chen, R., Pu, F., Dai, L.: Active disturbance rejection control for drag tracking in mars entry guidance. Adv. Space Res. 53(5), 853–861 (2014). https://doi.org/10.1016/j.asr.2013.12.008

    Article  Google Scholar 

  36. Xia, Y., Shen, G., Zhou, L., Sun, H.: Mars entry guidance based on segmented guidance predictor-corrector algorithm. Control Eng. Pract. 45, 79–85 (2015). https://doi.org/10.1016/j.conengprac.2015.08.006

    Article  Google Scholar 

  37. Dai, J., Xia, Y.: Mars atmospheric entry guidance for reference trajectory tracking. Aerosp. Sci. Technol. 45, 335–345 (2015). https://doi.org/10.1016/j.ast.2015.06.006

    Article  Google Scholar 

  38. Kevin, B., Michael, R., David, D.: Optimal nonlinear feedback guidance for reentry vehicles. In: Guidance, Navigation, and Control and Co-located Conferences. American Institute of Aeronautics and Astronautics (2006). https://doi.org/10.2514/6.2006-6074

  39. Panchal, B., Mate, N., Talole, S.E.: Continuous-time predictive control-based integrated guidance and control. J. Guid. Control Dyn. 1–17, (2017)

    Google Scholar 

  40. Tian, B., Fan, W., Su, R., Zong, Q.: Real-time trajectory and attitude coordination control for reusable launch vehicle in reentry phase. IEEE Trans. Ind. Electron. 62(3), 1639–1650 (2015). https://doi.org/10.1109/TIE.2014.2341553

    Article  Google Scholar 

  41. Liu, X., Zhang, F., Li, Z., Zhao, Y.: Approach and landing guidance design for reusable launch vehicle using multiple sliding surfaces technique. Chin. J. Aeronaut. 30(4), 1582–1591 (2017). https://doi.org/10.1016/j.cja.2017.06.008

    Article  Google Scholar 

  42. Sagliano, M., Mooij, E., Theil, S.: Onboard trajectory generation for entry vehicles via adaptive multivariate pseudospectral interpolation. In: AIAA SciTech Forum. American Institute of Aeronautics and Astronautics (2016). https://doi.org/10.2514/6.2016-2115

  43. Sagliano, M., Mooij, E., Theil, S.: Onboard trajectory generation for entry vehicles via adaptive multivariate pseudospectral interpolation. J. Guid. Control Dyn. 40(2), 466–476 (2017). https://doi.org/10.2514/1.G001817

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runqi Chai .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chai, R., Savvaris, A., Tsourdos, A., Chai, S. (2020). Multi-objective Trajectory Optimization Problem. In: Design of Trajectory Optimization Approach for Space Maneuver Vehicle Skip Entry Problems. Springer Aerospace Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9845-2_6

Download citation

Publish with us

Policies and ethics