Skip to main content

Optical Applications of Nanomaterials

Part of the Advanced Structured Materials book series (STRUCTMAT,volume 118)

Abstract

Riding on their size tunable properties, “Nanomaterials” have emerged as darling materials of 21st century for plethora of practical applications including optical. The nonlinear optical properties and optical emission of nanomaterial’s, enhances with the decrease in particle size due to the “quantum confinement effect.” Therefore, the quantum mechanical effects emerge at the nanoscale which ultimately dictates the optical properties of nanomaterials. This book chapter will delineate the conceptual basis of optical applications of nanomaterials, subject to their size and material specific optical properties, including examples for conceptual demonstration. Considering the broad width of applications this book chapter is particularly focussed on biosensing and photovoltaic applications of nanomaterials.

Keywords

  • Nanomaterials
  • Optical applications
  • Quantum confinement effect
  • Biosensing
  • Photovoltaics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-13-9833-9_1
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-981-13-9833-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Reproduced with permission from Frederix et al. (2003). Copy right 2003 American Chemical Society

Fig. 7
Fig. 8

Reproduced with permission from Zhang et al. (2005). Copyright 2005 Nature Publishing Group

Fig. 9

Reproduced with permission from Sabban (2011). Copyright 2011, University of Sheffield

Fig. 10

Reproduced with permission from Wang et al. (2009). Copyright 2009 Elsevier

Fig. 11

Reproduced with permission from Lee et al. (2010). Copyright Elsevier

Fig. 12
Fig. 13

Reproduced with permission from Marazuela and Moreno-Bondi (2002). Copyright © 2002, Springer-Verlag

Fig. 14

Reproduced with permission from Yin et al. (2013) copyright 2013 Royal Society of Chemistry

Fig. 15
Fig. 16
Fig. 17
Fig. 18

Reproduced with permission from Deutsch et al. (2013). Copyright © 2013, Springer Nature

Fig. 19

Adopted from Shang et al. (2015). Copyright © 2015, MDPI

Fig. 20
Fig. 21

Adopted with permission from Wu et al. (2016). Copyright © 2015, Springer Nature

Fig. 22

Adopted from Shang et al. (2015). Copyright 2015, MDPI

Fig. 23

References

  • Agrawal G (2013) Nonlinear fiber optics, fifth edn. Chapter 1. Elsevier Inc., pp 1–25

    Google Scholar 

  • Algar R, Krull UJ (2010) Developing mixed films of immobilized oligonucleotides and quantum dots for the multiplexed detection of nucleic acid hybridization using a combination of fluorescence resonance energy transfer and direct excitation of fluorescence. Langmuir 26:6041–6047

    CAS  CrossRef  Google Scholar 

  • Amemori S, Sasaki Y, Yanai N, Kimizuka N (2016) Near infrared-to-blue photon upconversion by exploiting direct S-T absorption of a molecular sensitizer. J Am Chem Soc 138:872–875

    CrossRef  CAS  Google Scholar 

  • Anas MM, Othman AP, Gopir G (2014) First-principle study of quantum confinement effect on small sized silicon quantum dots using density-functional theory. AIP Conf Proc 1614:104–109

    CAS  CrossRef  Google Scholar 

  • Asahi S, Teranishi H, Kusaki K, Kaizu T, Kita (2017) Two-step photon up-conversion solar cells. Nat Commun 8(14962):1–9

    Google Scholar 

  • Bakalova R, Zhelev Z, Ohba H, Baba Y (2005) Quantum dotbased western blot technology for ultrasensitive detection of tracer proteins. J Am Chem Soc 127:9328–9329

    CAS  CrossRef  Google Scholar 

  • Baluschev S, Miteva T, Yakutkin V, Nelles G, Yasuda A, Wegner G (2006) Up-conversion fluorescence: noncoherent excitation by sunlight. Phys Rev Lett 97:143903

    CAS  CrossRef  Google Scholar 

  • Best Research-Cell Efficiencies (NREL, accessed 02 January 2019); https://www.nrel.gov/pv/assets/pdfs/pv-efficiencychart.20181221.pdf

  • Bhagyaraj SM, Oluwafemi OS, Kalarikkal N, Thomas S (2018) Applications of nanomaterials: advances and key technologies, 1st edn. Woodhead Publishing

    Google Scholar 

  • Binnig G, Rohrer H (1986) Scanning tunneling microscopy. IBM J Res Dev 30:355–369

    CAS  Google Scholar 

  • Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108:423–461

    CAS  CrossRef  Google Scholar 

  • Bünzli JCG, Eliseeva SV (2010) Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion. J Rare Earths 28:824–842

    CrossRef  CAS  Google Scholar 

  • Cao C, Sim SJ (2007) Signal enhancement of surface plasmon resonance immunoassay using enzyme precipitation-functionalized gold nanoparticles: a femto molar level measurement of anti-glutamic acid decarboxylase antibody. Biosens Bioelectron 22:1874–1880

    CAS  CrossRef  Google Scholar 

  • Carey GH, Abdelhady AL, Ning Z, Thon SM, Bakr OM, Sargent EH (2015) Colloidal quantum dot solar cells. Chem Rev 115:12732–12763

    CAS  CrossRef  Google Scholar 

  • Carrasquilla C, Xiao Y, Xu CQ, Li Y, Brennan JD (2011) Enhancing sensitivity and selectivity of long-period grating sensors using structure-switching aptamers bound to golddoped macroporous silica coatings. Anal Chem 83:7984–7991

    CAS  CrossRef  Google Scholar 

  • Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A (2013) Carbon-based nanomaterials: multi-functional materials for biomedical engineering. ACS Nano 7:2891–2897

    CAS  CrossRef  Google Scholar 

  • Chapin DM, Fuller CS, Pearson GL (1954) A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys 25:676–677

    CAS  CrossRef  Google Scholar 

  • Chapter 1. Nanomaterials in biosensors: fundamentals and applications. Copyright © 2018 Elsevier Inc.

    Google Scholar 

  • Ciriolo AG, Negro M, Devetta M, Cinquanta E, Faccialà D, Pusala A, Silvestri SD, Stagira S, Vozzi C (2017) Optical parametric amplification techniques for the generation of high-energy few-optical-cycles IR pulses for strong field applications. Appl Sci 7:265-1-28

    CrossRef  CAS  Google Scholar 

  • Clancy AJ, Bayazit MK, Hodge SA, Skipper NT, Howard CA, Shaffer MSP (2018) Charged carbon nanomaterials: redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chem Rev 118:7363–7408

    CAS  CrossRef  Google Scholar 

  • Cui SM, Pu HH, Lu GH, Wen ZH, Mattson EC, Hirschmugl C, Gajdardziska-Josifovska M, Weinert M, Chen JH (2012) Fast and selective room-temperature ammonia sensors using silver nanocrystal-functionalized carbon nanotubes. ACS Appl Mater Interfaces 4:4898–4904

    CAS  CrossRef  Google Scholar 

  • Deutsch Z, Neeman L, Oron D (2013) Luminescence upconversion in colloidal double quantum dots. Nat Nanotechnol 8:649–653

    CAS  CrossRef  Google Scholar 

  • Dimroth F, Grave M, Beutel P, Fiedeler U, Karcher C, Tibbits TND, Oliva E, Siefer G, Schachtner M, Wekkeli A (2014) Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency. Prog Photovolt Res Appl 22:277–282

    CAS  CrossRef  Google Scholar 

  • European Commission (2011) Nanomaterials, 18 Oct 2011. http://ec.europa.eu/environment/chemicals/nanotech/

  • Franken P, Hill A, Peters C, Weinreich G (1961) Generation of optical harmonics. Phys Rev Lett 7:118–119

    CrossRef  Google Scholar 

  • Frasconi M, Tortolini C, Botre F, Mazzei F (2010) Multifunctional au nanoparticle dendrimer-based surface plasmon resonance biosensor and its application for improved insulin detection. Anal Chem 82:7335–7342

    CAS  CrossRef  Google Scholar 

  • Frederix F, Friedt JM, Choi KH, Laureyn W, Campitelli A, Mondelaers D, Maes G, Borghs G (2003) Biosensing based on light absorption of nanoscaled gold and silver particles. Anal Chem 75:6894–6900

    CAS  CrossRef  Google Scholar 

  • Ghann W, Kang H, Sheikh T, Yadav S, Chavez-Gil T, Uddin FJ (2017) Fabrication, optimization and characterization of natural dye sensitized solar cell. Sci Rep 7(41470):1–12

    Google Scholar 

  • Grätzel M (2014) The light and shade of perovskite solar cells. Nat Mater 13:838–842

    CrossRef  CAS  Google Scholar 

  • Green MA (1990) Photovoltaics: coming of age. In: 21st IEEE photovoltaic specialists conference. Orlando, USA, pp. 1-8

    Google Scholar 

  • Guo Z, Tan L (2009) Fundamental and applications of nanomaterials. Artech House, ISBN-13: 978-1-59693-262-3

    Google Scholar 

  • Hafez H, Saif M, Abdel-Mottaleb MSA (2011) Down-converting lanthanide doped TiO2 photoelectrodes for efficiency enhancement of dye-sensitized solar cells. J Power Sources 196:5792–5796

    CAS  CrossRef  Google Scholar 

  • Heinz TF, Chen CK, Ricard D, Shen YR (1982) Spectroscopy of molecular monolayers by resonant 2nd-harmonic generation. Phys Rev Lett 48:478–481

    CAS  CrossRef  Google Scholar 

  • Hill SP, Hanson K (2017) Harnessing molecular photon upconversion in a solar cell at sub-solar irradiance: role of the redox mediator. J Am Chem Soc 139:10988–10991

    CAS  CrossRef  Google Scholar 

  • Holzinger M, Goff AL, Cosnier S (2014) Nanomaterials for biosensing applications: a review. Front Chem 2:63-1-10

    Google Scholar 

  • Hoshino K, Huang YY, Lane N, Huebschman M, Uhr JW, Frenkel EP, Zhang XJ (2011) Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip 11:3449–3457

    CAS  CrossRef  Google Scholar 

  • Huang Y, Tang F, Liang X, Chen G, Xiao H, Azarmi F (2015) Steel bar corrosion monitoring with long-period fiber grating sensors coated with nano iron/silica particles and polyurethane. Struct Heal Monitor 14:178–189

    CrossRef  Google Scholar 

  • Jang YH, Jang YJ, Kim S, Quan LN, Chung K, Kim DH (2016) Plasmonic solar cells: from rational design to mechanism overview. Chem Rev 116:14982–15034

    CAS  CrossRef  Google Scholar 

  • Joarder B, Yanai N, Kimizuka N (2018) Solid-state photon upconversion materials: structural integrity and triplet-singlet dual energy migration. J Phys Chem Lett 9:4613–4624

    CAS  CrossRef  Google Scholar 

  • Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8:867–871

    CAS  CrossRef  Google Scholar 

  • Keshea BA, Khakpoor AA (2017) Opto-electronic properties of nano-electronic materials. Mater Res 20:1248–1253

    CrossRef  CAS  Google Scholar 

  • Kodaira S, Korposh S, Lee SW, Batty WJ, James SW, Tatam RP (2018) Fabrication of highly efficient fibre-optic gas sensors using SiO2/polymer nanoporous thin films. In: Proceedings of the 3rd international conference on sensing technology (ICST’08), pp 481–485

    Google Scholar 

  • Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051

    CAS  CrossRef  Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163

    CAS  CrossRef  Google Scholar 

  • Kwiatkowski M, Bezverkhyy I, Skompska M (2015) ZnO nanorods covered with a TiO2 layer: simple solegel preparation, and optical, photocatalytic and photoelectrochemical properties. J Mater Chem A 3:12748–12760

    CAS  CrossRef  Google Scholar 

  • Lara S, Perez-Potti A (2018) Applications of nanomaterials for immunosensing. Biosensors 8:104-1-21

    CrossRef  Google Scholar 

  • Law WC, Yong KT, Baev A, Prasad PN (2011) Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement. ACS Nano 5:4858–4864

    CAS  CrossRef  Google Scholar 

  • Lee EG, Park KM, Jeong JY, Lee SH, Baek JE, Lee HW, Jung JK, Chung BH (2010) Carbon nanotube-assisted enhancement of surface plasmon resonance signal. Anal Bio Chem 408:206–211

    Google Scholar 

  • Levinson R, Berdahl P, Akbari H (2005) Solar spectral optical properties of pigments-Part I: Model for deriving scattering and absorption coefficients from transmittance and reflectance measurements. Sol Energy Mater Sol C 89:319–349

    CAS  CrossRef  Google Scholar 

  • Lewis GN, Lipkin D, Magel TT (1941) Reversible photochemical processes in rigid media. A study of the phosphorescent state. J Am Chem Soc 63:3005–3018

    CAS  CrossRef  Google Scholar 

  • Li X, Liu X (2017) Group III nitride nanomaterials for biosensing. Nanoscale 9:7320–7341

    CAS  CrossRef  Google Scholar 

  • Li L, Yang Y, Fan R, Jiang Y, Wei L, Shi Y, Yu J, Chen S, Wang P, Yang B (2014) A simple modification of near-infrared photon-to-electron response with fluorescence resonance energy transfer for dye-sensitized solar cells. J Power Sources 264:254–261

    CAS  CrossRef  Google Scholar 

  • Lobnik A, Baldini F (ed) (2006) Absorption-based sensors. Opt Chem Sens 5, 224:77–98

    Google Scholar 

  • Luan QF, Zhou KB, Tan HN, Yang D, Yao X (2011) Au-NPs enhanced SPR biosensor based on hairpin DNA without the effect of nonspecific adsorption. Biosens Bioelectron 26:2473–2477

    CAS  CrossRef  Google Scholar 

  • Luca R (2010) Schiff base metal complexes for second order nonlinear optics. Chim Ind 3:118–122

    Google Scholar 

  • Makrides SC, Gasbarro C, Bello JM (2005) Bioconjugation of quantum dot luminescent probes for western blot analysis. BioTechn 39:501–505

    CAS  CrossRef  Google Scholar 

  • Marazuela MD, Moreno-Bondi MC (2002) Fiber-optic biosensors-an overview. Anal Bioanal Chem 372:664–682

    CAS  CrossRef  Google Scholar 

  • Matharu Z, Bandodkar AJ, Sumana G, Solanki PR, Ekanayake EM, Kaneto K (2009) Low density lipoprotein detection based on antibody immobilized selfassembled monolayer: investigations of kinetic and thermodynamic properties. J Phys Chem B 113:14405–14412

    CAS  CrossRef  Google Scholar 

  • McDonald SA, Konstantatos G, Zhang S, Cyr PW, Klem EJD, Levina L, Sargent EH (2005) Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat Mater 4:138–142

    CAS  CrossRef  Google Scholar 

  • McGraw-Hill Encyclopedia of Science and Technology, 5th edn. McGraw-Hill (1993)

    Google Scholar 

  • Nature Energy (2019) A decade of perovskite photovoltaics. Nat Energy 4:1

    Google Scholar 

  • Nehra A, Singh KP (2015) Current trends in nanomaterial embedded field effect transistor-based biosensor. Biosens Bioelectron 74:731–743

    CAS  CrossRef  Google Scholar 

  • O’Regan B, Grätzel MA (1991) Low-cost, high-efficiency solar cell based on dye-sensitized. Nature 353:737–740

    CrossRef  Google Scholar 

  • Okumura K, Mase K, Yanai N, Kimizuka N (2016) Employing core-shell quantum dots as triplet sensitizers for photon upconversion. Chem Eur J 22:7721–7726

    CAS  CrossRef  Google Scholar 

  • Palese S, Schilling L, Miller RJD, Staver PR, Lotshaw WT (1994) Femtosecond optical Kerr effect studies of water. J Phys Chem 98:6308–6316

    CAS  CrossRef  Google Scholar 

  • Pan Z, Rao H, Mora-Serό I, Bisquert J, Zhong X (2018) Quantum dot-sensitized solar cells. Chem Soc Rev 47:7659–7702

    CAS  CrossRef  Google Scholar 

  • Pittman TB, Jacobs BC, Franson JD (2004) Quantum computing using linear optics. Appl Tech Dig 25:84–90 Johns Hopkins

    Google Scholar 

  • Press Release: the 1996 Nobel Prize in Physics. Nobelprize.org. 15 Oct 1986

    Google Scholar 

  • Renewables 2018. Solar energy, International Energy Agency

    Google Scholar 

  • Rühle S (2016) Tabulated values of the Shockley-Queisser limit for single junction solar cells. Sol Energ 130:139–147

    CrossRef  Google Scholar 

  • Sabban S (2011) Development of an in vitro model system for studying the interaction of Equus caballus IgE with its high affinity FcεRI receptor. University of Sheffield, Ph.D thesis, pp 91. http://etheses.whiterose.ac.uk/2040/2/Sabban,_Sari.pdf

  • Sanderson K (2006-11-15) Sharpest cut from nanotube sword. Nat News

    Google Scholar 

  • Saule Technologies (2018) Saule Technologies and Skanska change construction industry. https://sauletech.com/2018/12/13/sauletechnologies-and-skanska-change-construction-industry

  • Shalav A, Richards BS, Trupke T (2005) Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Appl Phys Lett 86:013505

    CrossRef  CAS  Google Scholar 

  • Shang Y, Hao S, Yang C, Chen G (2015) Enhancing solar cell efficiency using photon upconversion materials. Nanomaterials 5:1782–1809

    CAS  CrossRef  Google Scholar 

  • Shao W, Chen G, Ohulchanskyy TY, Kuzmin A, Damasco J, Qiu H, Yang C, Hans Å, Prasad PN (2015) Lanthanide-doped fluoride core/multishell nanoparticles for broad-band upconversion of infrared light. Adv Opt Mater 3:575–582

    CAS  CrossRef  Google Scholar 

  • Shi J, Tian F, Lyu J, Yang M (2015a) Nanoparticle based fluorescence resonance energy transfer (FRET) for biosensing applications. J Mater Chem B 3:6989–7005

    CAS  CrossRef  Google Scholar 

  • Shi J, Chan C, Pang Y, Ye WW, Tian F, Lyu J, Zhang Y, Yang M (2015b) A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus. Biosens Bioelectron 67:595–600

    CAS  CrossRef  Google Scholar 

  • Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519

    CAS  CrossRef  Google Scholar 

  • Suresh S, Arivuoli D (2012) Nanomaterials for nonlinear optical (NLO) applications: a review. Rev Adv Mater Sci 30:243–253

    CAS  Google Scholar 

  • Takei K, Fang H, Kumar SB, Kapadia R, Gao Q, Madsen M, Kim HS, Liu CH, Chueh YL, Plis e, Krishna S, Bechtel HA, Guo J, Javey A (2011) Quantum confinement effects in nanoscale-thickness InAs membranes. Nano Lett 11:5008–5012

    CAS  CrossRef  Google Scholar 

  • Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57:724–803

    CAS  CrossRef  Google Scholar 

  • Trupke T, Green MA (2002) Improving solar cell efficiencies by down-conversion of high-energy photons. J Appl Phys 92:1668

    CAS  CrossRef  Google Scholar 

  • Tseng YT, Chuang YJ, Wu YC, Yang CS, Wang MC, Tseng FG (2008) A gold- nanoparticle-enhanced immune sensor based on fiber optic interferometry. Nanotech 19:345501

    CrossRef  CAS  Google Scholar 

  • Turner MD, Saba M, Zhang Q, Cumming BP, Schröder-Turk GE, Gu M (2013) Miniature chiral beamsplitter based on gyroid photonic crystals. Nat Photonics 7:801–805

    CAS  CrossRef  Google Scholar 

  • Urrutia A, Goicoechea J, Arregui FJ (2015) Optical fiber sensors based on nanoparticle-embedded coatings. J Sens, 1–18

    CrossRef  CAS  Google Scholar 

  • Vachali PP, Li B, Bartschi A, Bernstein PS (2015) Surface plasmon resonance (spr)-based biosensor technology for the quantitative characterization of protein-carotenoid interactions. Arch Biochem Biophys 15:66–72

    CrossRef  CAS  Google Scholar 

  • Wang B (2019) First commercial perovskite solar late in 2019 and the road to moving the energy needle. Next Big Future, Saule Tech

    Google Scholar 

  • Wang JL, Munir A, Zhou HS (2009) Au NPs-aptamer conjugates as a powerful competitive reagent for ultrasensitive detection of small molecules by surface plasmon resonance spectroscopy. Talanta 79:72–76

    CAS  CrossRef  Google Scholar 

  • Wang Z, Huang P, Bhirde A, Jin A, Ma Y, Niu G, Neamati N, Chen X (2012) A nanoscale graphene oxide–peptide biosensor for real-time specific biomarker detection on the cell surface. Chem Commun 48:9768–9770

    CAS  CrossRef  Google Scholar 

  • Wen J, Xu Y, Li H, Lu A, Sun S (2015) Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging. Chem Commun 51:11346–11358

    CAS  CrossRef  Google Scholar 

  • Williams R (1960) Becquerel photovoltaic effect in binary compounds. J Chem Phys 32:1505–1514

    CAS  CrossRef  Google Scholar 

  • Wink T, van Zuilen SJ, Bult A, van Bennekom WP (1998) Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance spectrometry. Anal Chem 70:827–832

    CAS  CrossRef  Google Scholar 

  • Wu M, Congreve DN, Wilson MWB, Jean J, Geva N, Welborn M, Voorhis TV, Bulović V, Bawendi MG, Baldo MA (2016) Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat Photon 10:31–34

    CAS  CrossRef  Google Scholar 

  • Wu K, Guo C, Wang H, Zhang X, Wang J, Chen J (2017) All-optical phase shifter and switch near 1550 nm using tungsten disulfide (WS2) deposited tapered fiber. Opt Exp 25:17639–17649 OSA Publishing

    CAS  CrossRef  Google Scholar 

  • Ye WW, Tsang MK, Liu X, Yang M, Hao J (2014) Upconversion luminescence resonance energy transfer (LRET)-based biosensor for rapid and ultrasensitive detection of avian influenza virus H7 subtype. Small 10:2390–2397

    CAS  CrossRef  Google Scholar 

  • Ye M, Gao X, Hong X, Liu Q, He C, Lin XLC (2017) Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes. Sust Energ Fuels 1:1217–1231

    CAS  CrossRef  Google Scholar 

  • Yin MJ, Wu C, Shao LY, Chan WKE, Zhang AP, Lu C, Tam HY (2013) Label-free, disposable fiber-optic biosensors for DNA hybridization detection. Analyst 138:1988–1994

    CAS  CrossRef  Google Scholar 

  • Yuan CZ, Chen GY, Prasad PN, Ohulchanskyy TY, Ning ZJ, Tian H, Sund LC, Agren H (2012) Use of colloidal upconversion nanocrystals for energy relay solar cell light harvesting in the near-infrared region. J Mater Chem 22:16709–16713

    CAS  CrossRef  Google Scholar 

  • Zadran S, Standley S, Wong K, Otiniano E, Amighi A, Baudry M (2012) Fluorescence resonance energy transfer (FRET)-based biosensors: visualizing cellular dynamics and bioenergetics. Appl Microbiol Biotechnol 96:895–902

    CAS  CrossRef  Google Scholar 

  • Zeng SW, Yong KT, Roy I, Dinh XQ, Yu X, Luan F (2011) A review on functionalized gold nanoparticlesfor biosensing applications. Plasmonics 6:491–506

    CAS  CrossRef  Google Scholar 

  • Zeng SW, Yu XW, Law CY, Hu ZR, Dinh XQ, Ho HP, Yong KT (2013) Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement. Sens Actuators, B 176:1128–1133

    CAS  CrossRef  Google Scholar 

  • Zeng S, Dominique B, Ho-Pui H, Ken-Tye Y (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43:3426–3452

    CAS  CrossRef  Google Scholar 

  • Zeng S, Hu S, Xia J, Anderson T, Dinh XQ, Meng XM, Coquet P, Yong KT (2015) Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens Actuat B Chem 207:801–810

    CAS  CrossRef  Google Scholar 

  • Zhang Y, Wang Y (2017) Nonlinear optical properties of metal nanoparticles: a review. RSC Adv 7:45129–45144

    CAS  CrossRef  Google Scholar 

  • Zhang CY, Yeh HC, Kuroki MT, Wang TH (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4:826–831

    CAS  CrossRef  Google Scholar 

  • Zhao H, Chang Y, Liu M, Gao S, Yu H, Quan X (2013) A universal immunosensing strategy based on regulation of the interaction between graphene and graphene quantum dots. Chem Commun 49:234–236

    CAS  CrossRef  Google Scholar 

  • Zheng X, Zhang L (2016) Photonic nanostructures for solar energy conversion. Energ Environ Sci 9:2511–2532

    CAS  CrossRef  Google Scholar 

  • Zhong Q, Fourkas JT (2008) Optical Kerr effect spectroscopy of simple liquids. J Phys Chem B 112:15529–15539

    CAS  CrossRef  Google Scholar 

  • Zibaii MI, Latifi H, Saeedian Z, Chenari Z (2014) Nonadiabatic tapered optical fiber sensor for measurement of antimicrobial activity of silver nanoparticles against Escherichia coli. J Photochem Photobiol B: Bio 135:55–64

    CAS  CrossRef  Google Scholar 

  • Zorman B, Ramakrishna MV, Friesner RA (1995) Quantum confinement effects in CdSe quantum dots. J Phys Chem 99:7649–7653

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Bharmoria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Bharmoria, P., Ventura, S.P.M. (2019). Optical Applications of Nanomaterials. In: Bhat, A., Khan, I., Jawaid, M., Suliman, F., Al-Lawati, H., Al-Kindy, S. (eds) Nanomaterials for Healthcare, Energy and Environment. Advanced Structured Materials, vol 118. Springer, Singapore. https://doi.org/10.1007/978-981-13-9833-9_1

Download citation