Skip to main content

Recent Advances in Glaucoma Diagnostics

  • Chapter
  • First Online:
Current Advances in Ophthalmic Technology

Part of the book series: Current Practices in Ophthalmology ((CUPROP))

  • 473 Accesses

Abstract

Glaucoma is one of the leading causes of irreversible blindness worldwide. Active clinical research has enhanced our understanding of pathogenesis of glaucoma as well as added promising treatment options. In this chapter, we discuss the recent trends in diagnostic modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strouthidis NG, Chandrasekharan G, Diamond JP, et al. Teleglaucoma: ready to go? Br J Ophthalmol. 2014;98:1605–11.

    Article  CAS  Google Scholar 

  2. Demeng L, Niansong M, Zhaofeng Z. An ultralow power wireless intraocular pressure monitoring system. J Semicond. 2014;35:105014.

    Article  Google Scholar 

  3. Araci IE, Su B, Quake SR, Mandel Y. An implantable microfluidic device for self-monitoring of intraocular pressure. Nat Med. 2014;20:1074–8.

    Article  CAS  Google Scholar 

  4. Mansouri K. The road ahead to continuous 24-hour intraocular pressure monitoring in glaucoma. J Ophthalmic Vis Res. 2014;9:260–8.

    PubMed  PubMed Central  Google Scholar 

  5. Molaei A, Karamzadeh V, Safi S, Esfandiari H, Dargahi J, Khosravi MA. Upcoming methods and specifications of continuous intraocular pressure monitoring systems for glaucoma. J Ophthalmic Vis Res. 2018;13(1):66–71.

    Article  Google Scholar 

  6. Dunbar GE, Shen BY, Aref AA. The Sensimed Triggerfish contact lens sensor: efficacy, safety, and patient perspectives. Clin Ophthalmol. 2017;11:875–82.

    Article  CAS  Google Scholar 

  7. Mariacher S, Ebner M, Hurst J, et al. Implantation and testing of a novel episcleral pressure transducer: a new approach to telemetric intraocular pressure monitoring. Exp Eye Res. 2018;166:84–90.

    Article  CAS  Google Scholar 

  8. Cetinel S, Montemagno C. Nanotechnology applications for glaucoma. Asia Pac J Ophthalmol (Phila). 2016;5(1):70–8.

    Article  CAS  Google Scholar 

  9. Jia Y, Wei E, Wang X, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014;121(7):1322–32.

    Article  Google Scholar 

  10. Akil H, Huang AS, Francis BA, et al. Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLoS One. 2017;12(2):e0170476.

    Article  Google Scholar 

  11. Rao HL, Sreenivasaiah S, Dixit S, Riyazuddin M, Dasari S, Venugopal JP, Pradhan ZS, Puttaiah NK, Devi S, Mansouri K, Webers CA, Weinreb RN. Choroidal microvascular dropout in primary open-angle glaucoma eyes with disc hemorrhage. J Glaucoma. 2019;28(3):181–7. https://doi.org/10.1097/IJG.0000000000001173.

    Article  PubMed  Google Scholar 

  12. Russo A, Mapham W, Turano R, Costagliola C, Morescalchi F, Scaroni N, Semeraro F. Comparison of smartphone ophthalmoscopy with slit-lamp biomicroscopy for grading vertical cup-to-disc ratio. J Glaucoma. 2016;25(9):e777–81.

    Article  Google Scholar 

  13. Mamtora S, Sandinha MT, Ajith A, Song A, Steel DHW. Smart phone ophthalmoscopy: a potential replacement for the direct ophthalmoscope. Eye (Lond). 2018;32(11):1766–71.

    Article  Google Scholar 

  14. Bastawrous A, Giardini ME, Bolster NM, et al. Clinical validation of a smartphone-based adapter for optic disc imaging in Kenya. JAMA Ophthalmol. 2016;134(2):151–8.

    Article  Google Scholar 

  15. Shanmugam MP, Mishra DK, Madhukumar R, Ramanjulu R, Reddy SY, Rodrigues G. Fundus imaging with a mobile phone: a review of techniques. Indian J Ophthalmol. 2014;62(9):960–2.

    Article  Google Scholar 

  16. Prea SM, Kong YXG, Mehta A, He M, Crowston JG, Gupta V, Martin KR, Vingrys AJ. Six-month longitudinal comparison of a portable tablet perimeter with the Humphrey field analyzer. Am J Ophthalmol. 2018;190:9–16.

    Article  Google Scholar 

  17. Nesaratnam N, Thomas PBM, Kirollos R, Vingrys AJ, Kong GYX, Martin KR. Tablets at the bedside – iPad-based visual field test used in the diagnosis of Intrasellar Haemangiopericytoma: a case report. BMC Ophthalmol. 2017;17(1):53.

    Article  Google Scholar 

  18. Kong YX, He M, Crowston JG, Vingrys AJ. A comparison of perimetric results from a tablet perimeter and Humphrey Field Analyzer in glaucoma patients. Transl Vis Sci Technol. 2016;5(6):2. eCollection 2016 Nov

    Article  Google Scholar 

  19. Johnson CA, Thapa S, George Kong YX, Robin AL. Performance of an iPad application to detect moderate and advanced visual field loss in Nepal. Am J Ophthalmol. 2017;182:147–54.

    Article  Google Scholar 

  20. Brown B. Smartphone app can screen for glaucoma. HealthTech Insider Web site. 2016. http://healthtechinsider.com/2016/09/16/smartphone-app-can-screen-glaucoma. Accessed 6 Dec 2018.

  21. Dabasia PL, Fidalgo BR, Edgar DF, Garway-Heath DF, Lawrenson JG. Diagnostic accuracy of technologies for glaucoma case-finding in a community setting. Ophthalmology. 2015;122(12):2407–15.

    Article  Google Scholar 

  22. Ong EL, Zheng Y, Aung T, Tan L, Cheng CY, Wong TY, How A. Performance of the Moorfields motion displacement test for identifying eyes with glaucoma. Ophthalmology. 2014;121(1):88–92.

    Article  Google Scholar 

  23. Gupta L, Cvintal V, Delvadia R, Sun Y, Erdem E, Zangalli C, et al. SPARCS and Pelli-Robson contrast sensitivity testing in normal controls and patients with cataract. Eye (Lond). 2017;31(5):753–61.

    Article  CAS  Google Scholar 

  24. Thakur S, Ichhpujani P, Kumar S, Kaur R, Sood S. Assessment of contrast sensitivity by Spaeth Richman Contrast Sensitivity Test and Pelli Robson Chart Test in patients with varying severity of glaucoma. Eye (Lond). 2018;32(8):1392–400.

    Article  Google Scholar 

  25. Faria BM, Duman F, Zheng CX, Waisbourd M, Gupta L, Ali M, et al. Evaluating contrast sensitivity in age-related macular degeneration using a Novel Computer-Based Test, The Spaeth/Richman Contrast Sensitivity Test. Retina. 2015;35(7):1465–73.

    Article  Google Scholar 

  26. Nakanishi M, Wang YT, Jung TP, et al. Detecting glaucoma with a portable brain-computer interface for objective assessment of visual function loss. JAMA Ophthalmol. 2017;135:550–7.

    Article  Google Scholar 

  27. La Mancusa A, Horn FK, Kremers J, et al. Pattern electroretinograms during the cold pressor test in normals and glaucoma patients. Invest Ophthalmol Vis Sci. 2014;55(4):2173–9.

    Article  Google Scholar 

  28. Zheng C, Johnson TV, Garg A, Boland MV. Artificial intelligence in glaucoma. Curr Opin Ophthalmol. 2019;30(2):97–103.

    Article  CAS  Google Scholar 

  29. Jones L, Bryan SR, Miranda MA, et al. Example of monitoring measurements in a virtual eye clinic using ‘big data’. Br J Ophthalmol. 2018;102:911–5.

    Article  Google Scholar 

  30. Von Thun Und Hohenstein-Blaul N, Kunst S, Pfeiffer N, Grus FH. Biomarkers for glaucoma: from the lab to the clinic. Eye (Lond). 2017;31(2):225–31.

    Article  Google Scholar 

  31. Ban N, Siegfried CJ, Lin JB, et al. GDF15 is elevated in mice following retinal ganglion cell death and in glaucoma patients. JCI Insight. 2017;2(9):e91455.

    Article  Google Scholar 

  32. Boehm N, Wolters D, Thiel U, et al. New insights into autoantibody profiles from immune privileged sites in the eye: a glaucoma study. Brain Behav Immun. 2012;26(1):96–102.

    Article  CAS  Google Scholar 

  33. Benoist d’Azy C, Pereira B, Chiambaretta F, Dutheil F. Oxidative and anti-oxidative stress markers in chronic glaucoma: a systematic review and meta-analysis. PLoS One. 2016;11(12):e0166915.

    Article  Google Scholar 

  34. Khawaja AP, Cooke Bailey JN, Wareham NJ, Scott RA, Simcoe M, Igo RP Jr, Song YE, Wojciechowski R, Cheng CY, Khaw PT, Pasquale LR, Haines JL, Foster PJ, Wiggs JL, Hammond CJ, Hysi PG, UK Biobank Eye and Vision Consortium; NEIGHBORHOOD Consortium. Genome-wide analyses identify 68 new loci associated with intraocular pressure and improve risk prediction for primary open-angle glaucoma. Nat Genet. 2018;50(6):778–82.

    Article  CAS  Google Scholar 

  35. Khawaja AP, Viswanathan AC. Are we ready for genetic testing for primary open-angle glaucoma? Eye. 2018;32(5):877–83.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ichhpujani, P. (2020). Recent Advances in Glaucoma Diagnostics. In: Ichhpujani, P. (eds) Current Advances in Ophthalmic Technology. Current Practices in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9795-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9795-0_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9794-3

  • Online ISBN: 978-981-13-9795-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics