Skip to main content

Bacterial Amyloids: Biogenesis and Biomaterials

  • Chapter
  • First Online:
Book cover Biological and Bio-inspired Nanomaterials

Abstract

Functional amyloid (FuBA) is produced by a large fraction of all bacterial species and represents a constructive use of the stable amyloid fold, in contrast to the pathological amyloid seen in neurodegenerative diseases. When assembled into amyloid, FuBA is unusually robust and withstands most chemicals including denaturants and SDS. Uses include strengthening of bacterial biofilms, cell-to-cell communication, cell wall construction and even bacterial warfare. Biogenesis is under tight spatio-temporal control, thanks to a simple but efficient secretion system which in E. coli, Pseudomonas and other well-studied bacteria includes a major amyloid component that is kept unfolded in the periplasm thanks to chaperones, threaded through the outer membrane via a pore protein and anchored to the cell surface through a nucleator and possibly other helper proteins. In these systems, amyloid formation is promoted through imperfect repeats, but other evolutionarily unrelated proteins either have no or only partially conserved repeats or simply consist of small peptides with multiple structural roles. This makes bioinformatics analysis challenging, though the sophisticated amyloid prediction tools developed from research in pathological amyloid together with the steady increase in identification of further examples of amyloid will strengthen genomic data mining. Functional amyloid represents an intriguing source of robust yet biodegradable materials with new properties, when combining the optimized self-assembly properties of the amyloid component with e.g. peptides with different binding properties or surface-reactive protein binders. Sophisticated patterns can also be obtained by co-incubating bacteria producing different types of amyloid, while amyloid inclusion bodies may lead to slow-release nanopills.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA et al (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447:453–457

    Article  CAS  PubMed  Google Scholar 

  2. Larsen P, Nielsen JL, Otzen D, Nielsen PH (2008) Amyloid-like adhesins produced by floc-forming and filamentous bacteria in activated sludge. Appl Environ Microbiol 74:1517–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Larsen P, Nielsen JL, Dueholm MS, Wetzel R, Otzen D et al (2007) Amyloid adhesins are abundant in natural biofilms. Environ Microbiol 9:3077–3090

    Article  CAS  PubMed  Google Scholar 

  4. Hung C, Zhou Y, Pinkner JS, Dodson KW, Crowley JR et al (2013) Escherichia coli biofilms have an organized and complex extracellular matrix structure. MBio 4:e00645–e00613

    PubMed  PubMed Central  Google Scholar 

  5. Hammer ND, Schmidt JC, Chapman MR (2007) The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization. Proc Natl Acad Sci U S A 104:12494–12499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J et al (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295:851–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou Y, Smith D, Leong BJ, Brannstrom K, Almqvist F et al (2012) Promiscuous cross-seeding between bacterial amyloids promotes interspecies biofilms. J Biol Chem 287:35092–35103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dueholm MS, Petersen SV, Sonderkaer M, Larsen P, Christiansen G et al (2010) Functional amyloid in pseudomonas. Mol Microbiol 77:1009–1020

    CAS  PubMed  Google Scholar 

  9. Schwartz K, Syed AK, Stephenson RE, Rickard AH, Boles BR (2012) Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog 8:e1002744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dueholm MS, Larsen P, Finster K, Stenvang MR, Christiansen G et al (2015) The tubular sheaths encasing methanosaeta thermophila filaments are functional amyloids. J Biol Chem 290:20590–20600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Romero D, Aguilar C, Losick R, Kolter R (2010) Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci U S A 107:2230–2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. White AP, Collinson SK, Banser PA, Gibson DL, Paetzel M et al (2001) Structure and characterization of AgfB from Salmonella enteritidis thin aggregative fimbriae. J Mol Biol 311:735–749

    Article  CAS  PubMed  Google Scholar 

  13. Gophna U, Barlev M, Seijffers R, Oelschlager TA, Hacker J et al (2001) Curli fibers mediate internalization of Escherichia coli by eukaryotic cells. Infect Immun 69:2659–2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barnhart MM, Chapman MR (2006) Curli biogenesis and function. Annu Rev Microbiol 60:131–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Austin JW, Sanders G, Kay WW, Collinson SK (1998) Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol Lett 162:295–301

    Article  CAS  PubMed  Google Scholar 

  16. Zogaj X, Bokranz W, Nimtz M, Romling U (2003) Production of cellulose and Curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71:4151–4158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hammar M, Arnqvist A, Bian Z, Olsén A, Normark S (1995) Expression of two csg operons is required for production of fibronectin- and Congo red-binding curli polymers in Escherichia coli K-12. Mol Microbiol 18:661–670

    Article  CAS  PubMed  Google Scholar 

  18. Blanco LP, Evans ML, Smith DR, Badtke MP, Chapman MR (2012) Diversity, biogenesis and function of microbial amyloids. Trends Microbiol 20:66–73

    Article  CAS  PubMed  Google Scholar 

  19. Romling U, Sierralta WD, Eriksson K, Normark S (1998) Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol Microbiol 28:249–264

    Article  CAS  PubMed  Google Scholar 

  20. Collinson SK, Emody L, Muller KH, Trust TJ, Kay WW (1991) Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. J Bacteriol 173:4773–4781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dueholm MS, Albertsen M, Otzen D, Nielsen PH (2012) Curli functional amyloid systems are phylogenetically widespread and display large diversity in operon and protein structure. PLoS One 7:e51274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jordal PB, Dueholm MS, Larsen P, Petersen SV, Enghild JJ et al (2009) Widespread abundance of functional bacterial amyloid in mycolata and other gram-positive bacteria. Appl Environ Microbiol 75:4101–4110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Otzen D (2010) Functional amyloid – turning swords into plowshares. Prion 4:256–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L et al (2011) In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A 108:4194–4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shahnawaz M, Soto C (2012) Microcin amyloid fibrils a are reservoir of toxic oligomeric species. J Biol Chem 287:11665–11676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. He Y, Zheng MM, Ma Y, Han XJ, Ma XQ et al (2012) Soluble oligomers and fibrillar species of amyloid beta-peptide differentially affect cognitive functions and hippocampal inflammatory response. Biochem Biophys Res Commun 429:125–130

    Article  CAS  PubMed  Google Scholar 

  27. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    Article  CAS  PubMed  Google Scholar 

  28. Kayed R, Sokolov Y, Edmonds B, McIntire TM, Milton SC et al (2004) Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 279:46363–46366

    Article  CAS  PubMed  Google Scholar 

  29. Evans ML, Chorell E, Taylor JD, Aden J, Gotheson A et al (2015) The bacterial curli system possesses a potent and selective inhibitor of amyloid formation. Mol Cell 57:445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nenninger AA, Robinson LS, Hammer ND, Epstein EA, Badtke MP et al (2011) CsgE is a curli secretion specificity factor that prevents amyloid fibre aggregation. Mol Microbiol 81:486–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wright CF, Teichmann SA, Clarke J, Dobson CM (2005) The importance of sequence diversity in the aggregation and evolution of proteins. Nature 438:878–881

    Article  CAS  PubMed  Google Scholar 

  32. Ross ED, Minton A, Wickner RB (2005) Prion domains: sequences, structures and interactions. Nat Cell Biol 7:1039–1044

    Article  CAS  PubMed  Google Scholar 

  33. Wang X, Chapman MR (2008) Sequence determinants of bacterial amyloid formation. J Mol Biol 380:570–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang X, Smith DR, Jones JW, Chapman MR (2007) In vitro polymerization of a functional Escherichia coli amyloid protein. J Biol Chem 282:3713–3719

    Article  CAS  PubMed  Google Scholar 

  35. Hammer ND, McGuffie BA, Zhou Y, Badtke MP, Reinke AA et al (2012) The C-terminal repeating units of CsgB direct bacterial functional amyloid nucleation. J Mol Biol 422:376–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hammar M, Bian Z, Normark S (1996) Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli. Proc Natl Acad Sci U S A 93:6562–6566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dueholm MS, Nielsen SB, Hein KL, Nissen P, Chapman M et al (2011) Fibrillation of the major curli subunit CsgA under a wide range of conditions implies a robust design of aggregation. Biochemistry 50:8281–8290

    Article  CAS  PubMed  Google Scholar 

  38. Shewmaker F, McGlinchey RP, Thurber KR, McPhie P, Dyda F et al (2009) The functional curli amyloid is not based on in-register parallel beta-sheet structure. J Biol Chem 284:25065–25076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rochet JC, Lansbury PT Jr (2000) Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 10:60–68

    Article  CAS  PubMed  Google Scholar 

  40. Taylor JD, Hawthorne WJ, Lo J, Dear A, Jain N et al (2016) Electrostatically-guided inhibition of Curli amyloid nucleation by the CsgC-like family of chaperones. Sci Rep 6:24656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Loferer H, Hammar M, Normark S (1997) Availability of the fibre subunit CsgA and the nucleator protein CsgB during assembly of fibronectin-binding curli is limited by the intracellular concentration of the novel lipoprotein CsgG. Mol Microbiol 26:11–23

    Article  CAS  PubMed  Google Scholar 

  42. Tian P, Boomsma W, Wang Y, Otzen DE, Jensen MH et al (2015) Structure of a functional amyloid protein subunit computed using sequence variation. J Am Chem Soc 137:22–25

    Article  CAS  PubMed  Google Scholar 

  43. Robinson LS, Ashman EM, Hultgren SJ, Chapman MR (2006) Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein. Mol Microbiol 59:870–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Epstein EA, Reizian MA, Chapman MR (2009) Spatial clustering of the curlin secretion lipoprotein requires curli fiber assembly. J Bacteriol 191:608–615

    Article  CAS  PubMed  Google Scholar 

  45. Goyal P, Krasteva PV, Van Gerven N, Gubellini F, Van den Broeck I et al (2014) Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature 516:250–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cao B, Zhao Y, Kou Y, Ni D, Zhang XC et al (2014) Structure of the nonameric bacterial amyloid secretion channel. Proc Natl Acad Sci U S A 111:E5439–E5444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Geibel S, Procko E, Hultgren SJ, Baker D, Waksman G (2013) Structural and energetic basis of folded-protein transport by the FimD usher. Nature 496:243–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Van Gerven N, Klein RD, Hultgren SJ, Remaut H (2015) Bacterial amyloid formation: structural insights into curli biogensis. Trends Microbiol 23:693–706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Van Gerven N, Goyal P, Vandenbussche G, De Kerpel M, Jonckheere W et al (2014) Secretion and functional display of fusion proteins through the curli biogenesis pathway. Mol Microbiol 91:1022–1035

    Article  PubMed  CAS  Google Scholar 

  50. Sivanathan V, Hochschild A (2012) Generating extracellular amyloid aggregates using E. coli cells. Genes Dev 26:2659–2667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Andersson EK, Bengtsson C, Evans ML, Chorell E, Sellstedt M et al (2013) Modulation of curli assembly and pellicle biofilm formation by chemical and protein chaperones. Chem Biol 20:1245–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nenninger AA, Robinson LS, Hultgren SJ (2009) Localized and efficient curli nucleation requires the chaperone-like amyloid assembly protein CsgF. Proc Natl Acad Sci U S A 106:900–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dueholm MS, Otzen D, Nielsen PH (2013) Evolutionary insight into the functional amyloids of the pseudomonads. PLoS One 8:e76630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dueholm MS, Sondergaard MT, Nilsson M, Christiansen G, Stensballe A et al (2013) Expression of Fap amyloids in Pseudomonas aeruginosa, P. fluorescens, and P. putida results in aggregation and increased biofilm formation. Microbiology 2:365–382

    CAS  Google Scholar 

  55. Zeng G, Vad BS, Dueholm MS, Christiansen G, Nilsson M et al (2015) Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness. Front Microbiol 6:1099

    PubMed  PubMed Central  Google Scholar 

  56. Herbst FA, Sondergaard MT, Kjeldal H, Stensballe A, Nielsen PH et al (2015) Major proteomic changes associated with amyloid-induced biofilm formation in Pseudomonas aeruginosa PAO1. J Proteome Res 14:72–81

    Article  CAS  PubMed  Google Scholar 

  57. Wiehlmann L, Munder A, Adams T, Juhas M, Kolmar H et al (2007) Functional genomics of Pseudomonas aeruginosa to identify habitat-specific determinants of pathogenicity. Int J Med Microbiol 297:615–623

    Article  CAS  PubMed  Google Scholar 

  58. Olsen A, Jonsson A, Normark S (1989) Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338:652–655

    Article  CAS  PubMed  Google Scholar 

  59. Olsen A, Arnqvist A, Hammar M, Sukupolvi S, Normark S (1993) The RpoS sigma factor relieves H-NS-mediated transcriptional repression of csgA, the subunit gene of fibronectin-binding curli in Escherichia coli. Mol Microbiol 7:523–536

    Article  CAS  PubMed  Google Scholar 

  60. Collinson SK, Doig PC, Doran JL, Clouthier S, Trust TJ et al (1993) Thin, aggregative fimbriae mediate binding of Salmonella enteritidis to fibronectin. J Bacteriol 175:12–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Collinson SK, Parker JM, Hodges RS, Kay WW (1999) Structural predictions of AgfA, the insoluble fimbrial subunit of Salmonella thin aggregative fimbriae. J Mol Biol 290:741–756

    Article  CAS  PubMed  Google Scholar 

  62. Gazit E (2002) A possible role for pi-stacking in the self-assembly of amyloid fibrils. FASEB J 16:77–83

    Article  CAS  PubMed  Google Scholar 

  63. Azriel R, Gazit E (2001) Analysis of the minimal amyloid-forming fragment of the islet amyloid polypeptide. An experimental support for the key role of the phenylalanine residue in amyloid formation. J Biol Chem 276:34156–34161

    Article  CAS  PubMed  Google Scholar 

  64. Dueholm M, Nielsen PH (2016) Amyloids – a neglected child of the slime. In: Flemming H-C, Neu T, Wingender J (eds) The perfect slime. IWA Publishing, London

    Google Scholar 

  65. Gibson DL, White AP, Rajotte CM, Kay WW (2007) AgfC and AgfE facilitate extracellular thin aggregative fimbriae synthesis in Salmonella enteritidis. Microbiology 153:1131–1140

    Article  CAS  PubMed  Google Scholar 

  66. Manara A, DalCorso G, Baliardini C, Farinati S, Cecconi D et al (2012) Pseudomonas putida response to cadmium: changes in membrane and cytosolic proteomes. J Proteome Res 11:4169–4179

    Article  CAS  PubMed  Google Scholar 

  67. Lewenza S, Gardy JL, Brinkman FS, Hancock RE (2005) Genome-wide identification of Pseudomonas aeruginosa exported proteins using a consensus computational strategy combined with a laboratory-based PhoA fusion screen. Genome Res 15:321–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bian Z, Normark S (1997) Nucleator function of CsgB for the assembly of adhesive surface organelles in Escherichia coli. EMBO J 16:5827–5836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Taylor JD, Zhou Y, Salgado PS, Patwardhan A, McGuffie M et al (2011) Atomic resolution insights into curli fiber biogenesis. Structure 19:1307–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Collinson SK, Clouthier SC, Doran JL, Banser PA, Kay WW (1996) Salmonella enteritidis agfBAC operon encoding thin, aggregative fimbriae. J Bacteriol 178:662–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dueholm MS, Søndergaard MT, Nilsson M, Christiansen G, Stensballe A, Overgaard MT, Givskov M, Tolker-Nielsen T, Otzen DE, Nielsen PH (2013) Expression of Fap amyloids in Pseudomonas aeruginosa, P. fluorescens, and P. putida results in aggregation and increased biofilm formation. MicrobiologyOpen 2:365–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Seviour T, Hansen SH, Yang L, Yau YH, Wang VB et al (2015) Functional amyloids keep quorum-sensing molecules in check. J Biol Chem 290:6457–6469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chai L, Romero D, Kayatekin C, Akabayov B, Vlamakis H et al (2013) Isolation, characterization, and aggregation of a structured bacterial matrix precursor. J Biol Chem 288:17559–17568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Terra R, Stanley-Wall NR, Cao G, Lazazzera BA (2012) Identification of Bacillus subtilis SipW as a bifunctional signal peptidase that controls surface-adhered biofilm formation. J Bacteriol 194:2781–2790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Romero D, Vlamakis H, Losick R, Kolter R (2011) An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms. Mol Microbiol 80:1155–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stover AG, Driks A (1999) Secretion, localization, and antibacterial activity of TasA, a Bacillus subtilis spore-associated protein. J Bacteriol 181:1664–1672

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Oh J, Kim JG, Jeon E, Yoo CH, Moon JS et al (2007) Amyloidogenesis of type III-dependent harpins from plant pathogenic bacteria. J Biol Chem 282:13601–13609

    Article  CAS  PubMed  Google Scholar 

  78. Kim JG, Park BK, Yoo CH, Jeon E, Oh J et al (2003) Characterization of the Xanthomonas axonopodis pv. glycines Hrp Pathogenicity Island. J Bacteriol 185:3155–3166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. de Jong W, Wosten HA, Dijkhuizen L, Claessen D (2009) Attachment of Streptomyces coelicolor is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose. Mol Microbiol 73:1128–1140

    Article  PubMed  CAS  Google Scholar 

  80. Claessen D, Rink R, de Jong W, Siebring J, de Vreugd P et al (2003) A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev 17:1714–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sawyer EB, Claessen D, Haas M, Hurgobin B, Gras SL (2011) The assembly of individual chaplin peptides from Streptomyces coelicolor into functional amyloid fibrils. PLoS One 6:e18839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bokhove M, Claessen D, de Jong W, Dijkhuizen L, Boekema EJ et al (2013) Chaplins of Streptomyces coelicolor self-assemble into two distinct functional amyloids. J Struct Biol 184:301–309

    Article  CAS  PubMed  Google Scholar 

  83. Elliot MA, Karoonuthaisiri N, Huang J, Bibb MJ, Cohen SN et al (2003) The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev 17:1727–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Di Berardo C, Capstick DS, Bibb MJ, Findlay KC, Buttner MJ et al (2008) Function and redundancy of the chaplin cell surface proteins in aerial hypha formation, rodlet assembly, and viability in Streptomyces coelicolor. J Bacteriol 190:5879–5889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Alteri CJ, Xicohtencatl-Cortes J, Hess S, Caballero-Olin G, Giron JA et al (2007) Mycobacterium tuberculosis produces pili during human infection. Proc Natl Acad Sci U S A 104:5145–5150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ramsugit S, Guma S, Pillay B, Jain P, Larsen MH et al (2013) Pili contribute to biofilm formation in vitro in Mycobacterium tuberculosis. Antonie Van Leeuwenhoek 104:725–735

    Article  PubMed  Google Scholar 

  87. Velayati AA, Farnia P, Masjedi MR (2012) Pili in totally drug resistant Mycobacterium Tuberculosis (TDR-TB). Int J Mycobacteriol 1:57–58

    Article  PubMed  Google Scholar 

  88. Oli MW, Otoo HN, Crowley PJ, Heim KP, Nascimento MM et al (2012) Functional amyloid formation by Streptococcus mutans. Microbiology 158:2903–2916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bieler S, Estrada L, Lagos R, Baeza M, Castilla J et al (2005) Amyloid formation modulates the biological activity of a bacterial protein. J Biol Chem 280:26880–26885

    Article  CAS  PubMed  Google Scholar 

  90. Lagos R, Villanueva JE, Monasterio O (1999) Identification and properties of the genes encoding microcin E492 and its immunity protein. J Bacteriol 181:212–217

    CAS  PubMed  PubMed Central  Google Scholar 

  91. de Lorenzo V (1984) Isolation and characterization of microcin E492 from Klebsiella pneumoniae. Arch Microbiol 139:72–75

    Article  PubMed  Google Scholar 

  92. de Lorenzo V, Martinez JL, Asensio C (1984) Microcin-mediated interactions between Klebsiella pneumoniae and Escherichia coli strains. J Gen Microbiol 130:391–400

    PubMed  Google Scholar 

  93. Gekara NO, Jacobs T, Chakraborty T, Weiss S (2005) The cholesterol-dependent cytolysin listeriolysin O aggregates rafts via oligomerization. Cell Microbiol 7:1345–1356

    Article  CAS  PubMed  Google Scholar 

  94. Bavdek A, Kostanjšek R, Antonini V, Lakey JH, Dalla Serra M et al (2012) pH dependence of listeriolysin O aggregation and pore-forming ability. FEBS J 279:126–141

    Article  CAS  PubMed  Google Scholar 

  95. Vazquez-Boland JA, Dominguez-Bernal G, Gonzalez-Zorn B, Kreft J, Goebel W (2001) Pathogenicity islands and virulence evolution in Listeria. Microbes Infect 3:571–584

    Article  CAS  PubMed  Google Scholar 

  96. Vuong C, Durr M, Carmody AB, Peschel A, Klebanoff SJ et al (2004) Regulated expression of pathogen-associated molecular pattern molecules in Staphylococcus epidermidis: quorum-sensing determines pro-inflammatory capacity and production of phenol-soluble modulins. Cell Microbiol 6:753–759

    Article  CAS  PubMed  Google Scholar 

  97. Periasamy S, Joo HS, Duong AC, Bach TH, Tan VY et al (2012) How Staphylococcus aureus biofilms develop their characteristic structure. Proc Natl Acad Sci U S A 109:1281–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Moreno-Del Alamo M, de la Espina SM, Fernandez-Tresguerres ME, Giraldo R (2015) Pre-amyloid oligomers of the proteotoxic RepA-WH1 prionoid assemble at the bacterial nucleoid. Sci Rep 5:14669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Molina-Garcia L, Gasset-Rosa F, Moreno-Del Alamo M, Fernandez-Tresguerres ME, Moreno-Diaz de la Espina S et al (2016) Functional amyloids as inhibitors of plasmid DNA replication. Sci Rep 6:25425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Diehl A, Roske Y, Ball L, Chowdhury A, Hiller M et al (2018) Structural changes of TasA in biofilm formation of Bacillus subtilis. Proc Natl Acad Sci U S A 115:3237–3242

    Article  CAS  Google Scholar 

  101. Nagorska K, Ostrowski A, Hinc K, Holland IB, Obuchowski M (2010) Importance of eps genes from Bacillus subtilis in biofilm formation and swarming. J Appl Genet 51:369–381

    Article  CAS  PubMed  Google Scholar 

  102. Dueholm MS, Petersen SV, Sønderkær M, Larsen P, Christiansen G et al (2010) Functional amyloid in Pseudomonas. Mol Microbiol 77:1009–1020

    CAS  PubMed  Google Scholar 

  103. Dueholm MS, Larsen P, Finster K, Stenvang MR, Christiansen G et al (2015) The tubular sheaths encasing Methanosaeta thermophila are functional amyloids. J Biol Chem 290:20590–20600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Oh J, Kim J-G, Jeon E, Yo C-H, Moon JS et al (2007) Amyloidogenesis of type III-dependent harpins from plant pathogenic bacteria. J Biol Chem 282:13601–13609

    Article  CAS  PubMed  Google Scholar 

  105. Volles MJ, Lee SJ, Rochet JC, Shtilerman MD, Ding TT et al (2001) Vesicle permeabilization by protofibrillar α-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 40:7812–7819

    Article  CAS  PubMed  Google Scholar 

  106. Claessen D, Rink R, de Jong W, Siebring J, de Vreughd P et al (2003) A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev 17:1714–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Elliot MA, Karoonuthaisir N, Huang J, Bibb MJ, Cohen SN et al (2003) The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev 17:1727–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schwartz K, Ganesan M, Payne DE, Solomon MJ, Boles BR (2015) Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms. Mol Microbiol 99(1):123–134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Maurer-Stroh S, Debulpaep M, Kuemmerer N, de la Paz ML, Martins IC et al (2010) Exploring the sequence determinants of amyloid structure using position-specific scoring matrices (vol 7, pg 237, 2010). Nat Methods 7:855–855

    Google Scholar 

  110. Emily M, Talvas A, Delamarche C (2013) MetAmyl: a METa-predictor for AMYLoid proteins. PLoS One 8:e79722

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ahmed AB, Znassi N, Chateau MT, Kajava AV (2015) A structure-based approach to predict predisposition to amyloidosis. Alzheimers Dement 11:681–690

    Article  PubMed  Google Scholar 

  112. Stanislawski J, Kotulska M, Unold O (2013) Machine learning methods can replace 3D profile method in classification of amyloidogenic hexapeptides. BMC Bioinformatics 14:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Walsh I, Seno F, Tosatto SCE, Trovato A (2014) PASTA 2.0: an improved server for protein aggregation prediction. Nucleic Acids Res 42:W301–W307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Conchillo-Sole O, de Groot NS, Aviles FX, Vendrell J, Daura X et al (2007) AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics 8:65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Garbuzynskiy SO, Lobanov MY, Galzitskaya OV (2010) FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence. Bioinformatics 26:326–332

    Article  CAS  PubMed  Google Scholar 

  116. Tartaglia GG, Vendruscolo M (2008) The Zyggregator method for predicting protein aggregation propensities. Chem Soc Rev 37:1395–1401

    Article  CAS  PubMed  Google Scholar 

  117. Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22:1302–1306

    Article  CAS  PubMed  Google Scholar 

  118. Bryan AW, Menke M, Cowen LJ, Lindquist SL, Berger B (2009) BETASCAN: probable beta-amyloids identified by pairwise probabilistic analysis. PLoS Comput Biol 5:e1000333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Thompson MJ, Sievers SA, Karanicolas J, Ivanova MI, Baker D et al (2006) The 3D profile method for identifying fibril-forming segments of proteins. Proc Natl Acad Sci U S A 103:4074–4078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kim C, Choi J, Lee SJ, Welsh WJ, Yoon S (2009) NetCSSP: web application for predicting chameleon sequences and amyloid fibril formation. Nucleic Acids Res 37:W469–W473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hamodrakas SJ (2011) Protein aggregation and amyloid fibril formation prediction software from primary sequence: towards controlling the formation of bacterial inclusion bodies. FEBS J 278:2428–2435

    Article  CAS  PubMed  Google Scholar 

  122. Ahmed AB, Kajava AV (2013) Breaking the amyloidogenicity code: methods to predict amyloids from amino acid sequence. FEBS Lett 587:1089–1095

    Article  CAS  PubMed  Google Scholar 

  123. Hamodrakas SJ (1988) A protein secondary structure prediction scheme for the Ibm Pc and compatibles. Comput Appl Biosci 4:473–477

    CAS  PubMed  Google Scholar 

  124. Zibaee S, Makin OS, Goedert M, Serpell LC (2007) A simple algorithm locates beta-strands in the amyloid fibril core of alpha-synuclein, a beta, and tau using the amino acid sequence alone. Protein Sci 16:1242–1242

    Article  CAS  Google Scholar 

  125. Dubay KF, Pawar AP, Chiti F, Zurdo J, Dobson CM et al (2004) Prediction of the absolute aggregation rates of amyloidogenic polypeptide chains. J Mol Biol 341:1317–1326

    Article  CAS  PubMed  Google Scholar 

  126. Galzitskaya OV, Garbuzynskiy SO, Lobanov MY (2006) Prediction of amyloidogenic and disordered regions in protein chains. PLoS Comput Biol 2:1639–1648

    Article  CAS  Google Scholar 

  127. Galzitskaya OV, Garbuzynskiy SO, Lobanov MY (2007) Expected packing density allows prediction of both amyloidogenic and disordered regions in protein chains. J Phys Condens Matter 19:285225

    Article  CAS  Google Scholar 

  128. Trovato A, Chiti F, Maritan A, Seno F (2006) Insight into the structure of amyloid fibrils from the analysis of globular proteins. PLoS Comput Biol 2:1608–1618

    Article  CAS  Google Scholar 

  129. Zhang ZQ, Chen H, Lai LH (2007) Identification of amyloid fibril-forming segments based on structure and residue-based statistical potential. Bioinformatics 23:2218–2225

    Article  CAS  PubMed  Google Scholar 

  130. Thangakani AM, Kumar S, Nagarajan R, Velmurugan D, Gromiha MM (2014) GAP: towards almost 100 percent prediction for beta-strand-mediated aggregating peptides with distinct morphologies. Bioinformatics 30:1983–1990

    Article  CAS  PubMed  Google Scholar 

  131. O’Donnell CW, Waldispuhl J, Lis M, Halfmann R, Devadas S et al (2011) A method for probing the mutational landscape of amyloid structure. Bioinformatics 27:I34–I42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. de la Paz ML, Serrano L (2004) Sequence determinants of amyloid fibril formation. Proc Natl Acad Sci U S A 101:87–92

    Article  CAS  Google Scholar 

  133. de Groot NS, Aviles FX, Vendrell J, Ventura S (2006) Mutagenesis of the central hydrophobic cluster in A beta 42 Alzheimer’s pepticle – side-chain properties correlate with aggregation propensities. FEBS J 273:658–668

    Article  PubMed  CAS  Google Scholar 

  134. de Groot NS, Pallares I, Aviles FX, Vendrell J, Ventura S (2005) Prediction of “hot spots” of aggregation in disease-linked polypeptides. BMC Struct Biol 5:1–15

    Article  CAS  Google Scholar 

  135. Tian J, Wu NF, Guo J, Fan YL (2009) Prediction of amyloid fibril-forming segments based on a support vector machine. BMC Bioinformatics 10:S45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. David MPC, Concepcion GP, Padlan EA (2010) Using simple artificial intelligence methods for predicting amyloidogenesis in antibodies. BMC Bioinformatics 11:1–13

    Article  CAS  Google Scholar 

  137. Nair SSK, Reddy NVS, Hareesha KS (2011) Exploiting heterogeneous features to improve in silico prediction of peptide status – amyloidogenic or non-amyloidogenic. BMC Bioinformatics 12:S21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gasior P, Kotulska M (2014) FISH Amyloid – a new method for finding amyloidogenic segments in proteins based on site specific co-occurence of aminoacids. BMC Bioinformatics 15:1–8

    Article  Google Scholar 

  139. Famlia C, Dennison SR, Quintas A, Phoenix DA (2015) Prediction of peptide and protein propensity for amyloid formation. PLoS One 10:e0134679

    Article  CAS  Google Scholar 

  140. Tsolis AC, Papandreou NC, Iconomidou VA, Hamodrakas SJ (2013) A consensus method for the prediction of ‘Aggregation-Prone’ peptides in globular proteins. PLoS One 8:e54175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Frousios KK, Iconomidou VA, Karletidi CM, Hamodrakas SJ (2009) Amyloidogenic determinants are usually not buried. BMC Struct Biol 9:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Kallberg Y, Gustafsson M, Persson B, Thyberg J, Johansson J (2001) Prediction of amyloid fibril-forming proteins. J Biol Chem 276:12945–12950

    Article  CAS  PubMed  Google Scholar 

  143. Yoon S, Welsh WJ (2004) Detecting hidden sequence propensity for amyloid fibril formation. Protein Sci 13:2149–2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kawashima S, Ogata H, Kanehisa M (1999) AAindex: amino acid index database. Nucleic Acids Res 27:368–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bowie JU, Eisenberg D (1993) Inverted protein-structure prediction. Curr Opin Struct Biol 3:437–444

    Article  CAS  Google Scholar 

  146. Zheng WH, Schafer NP, Wolynes PG (2013) Frustration in the energy landscapes of multidomain protein misfolding. Proc Natl Acad Sci U S A 110:1680–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zheng WH, Schafer NP, Wolynes PG (2013) Free energy landscapes for initiation and branching of protein aggregation. Proc Natl Acad Sci U S A 110:20515–20520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Jain AK, Duin RPW, Mao JC (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22:4–37

    Article  Google Scholar 

  149. Beerten J, Van Durme J, Gallardo R, Capriotti E, Serpell L et al (2015) WALTZ-DB: a benchmark database of amyloidogenic hexapeptides. Bioinformatics 31:1698–1700

    Article  CAS  PubMed  Google Scholar 

  150. Lembre P, Vendrely C, Di Martino P (2014) Identification of an Amyloidogenic peptide from the bap protein of Staphylococcus epidermidis. Protein Pept Lett 21:75–79

    Article  CAS  PubMed  Google Scholar 

  151. Bezsonov EE, Groenning M, Galzitskaya OV, Gorkovskii AA, Semisotnov GV et al (2013) Amyloidogenic peptides of yeast cell wall glucantransferase Bgl2p as a model for the investigation of its pH-dependent fibril formation. Prion 7:175–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hardy GG, Allen RC, Toh E, Long M, Brown PJB et al (2010) A localized multimeric anchor attaches the Caulobacter holdfast to the cell pole. Mol Microbiol 76:409–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Iglesias V, de Groot NS, Ventura S (2015) Computational analysis of candidate prion-like proteins in bacteria and their role. Front Microbiol 6:1123

    Article  PubMed  PubMed Central  Google Scholar 

  154. Louros NN, Bolas GMP, Tsiolaki PL, Hamodrakas SJ, Iconomidou VA (2016) Intrinsic aggregation propensity of the CsgB nucleator protein is crucial for curli fiber formation. J Struct Biol 195:179–189

    Article  CAS  PubMed  Google Scholar 

  155. Romero D, Vlamakis H, Losick R, Kolter R (2014) Functional analysis of the accessory protein TapA in Bacillus subtilis amyloid fiber assembly. J Bacteriol 196:1505–1513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Ivanova N, Sikorski J, Jando M, Munk C, Lapidus A et al (2010) Complete genome sequence of Geodermatophilus obscurus type strain (G-20(T)). Stand Genomic Sci 2:158–167

    Article  PubMed  PubMed Central  Google Scholar 

  157. Althani AA, Marei HE, Hamdi WS, Nasrallah GK, El Zowalaty ME et al (2016) Human microbiome and its association with health and diseases. J Cell Physiol 231:1688–1694

    Article  CAS  PubMed  Google Scholar 

  158. Eloe-Fadrosh EA, Paez-Espino D, Jarett J, Dunfield PF, Hedlund BP et al (2016) Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nat Commun 7:10476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Alberti S, Halfmann R, King O, Kapila A, Lindquist S (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137:146–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR (2015) Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev 39:649–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Louros NN, Baltoumas FA, Hamodrakas SJ, Iconomidou VA (2016) A beta-solenoid model of the Pmel17 repeat domain: insights to the formation of functional amyloid fibrils. J Comput Aided Mol Des 30:153–164

    Article  CAS  PubMed  Google Scholar 

  162. De Vries SJ, van Dijk M, Bonvin AMJJ (2010) The HADDOCK web server for data-driven biomolecular docking. Nat Protoc 5:883–897

    Article  PubMed  CAS  Google Scholar 

  163. Tian PF, Lindorff-Larsen K, Boomsma W, Jensen MH, Otzen DE (2016) A Monte Carlo Study of the early steps of functional amyloid formation. PLoS One 11:e0146096

    Article  PubMed  PubMed Central  Google Scholar 

  164. Chen MC, Zheng WH, Wolynes PG (2016) Energy landscapes of a mechanical prion and their implications for the molecular mechanism of long-term memory. Proc Natl Acad Sci U S A 113:5006–5011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Si K, Lindquist S, Kandel ER (2003) A neuronal isoform of the Aplysia CPEB has prion-like properties. Cell 115:879–891

    Article  CAS  PubMed  Google Scholar 

  166. Wang F, Wang X, Yuan CG, Ma J (2010) Generating a prion with bacterially expressed recombinant prion protein. Science 327:1132–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Knight JD, Miranker AD (2004) Phospholipid catalysis of diabetic amyloid assembly. J Mol Biol 341:1175–1187

    Article  CAS  PubMed  Google Scholar 

  168. Derkatch IL, Bradley ME, Zhou P, Chernoff YO, Liebman SW (1997) Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 147:507–519

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Sivanathan V, Hochschild A (2013) A bacterial export system for generating extracellular amyloid aggregates. Nat Protoc 8:1381–1390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Khurana R, Uversky VN, Nielsen L, Fink AL (2001) Is Congo Red an amyloid-specific dye? J Biol Chem 276:22715–22721

    Article  CAS  PubMed  Google Scholar 

  171. Nguyen PQ, Botyanszki Z, Tay PK, Joshi NS (2014) Programmable biofilm-based materials from engineered curli nanofibres. Nat Commun 5:4945

    Article  CAS  PubMed  Google Scholar 

  172. Zakeri B, Fierer JO, Celik E, Chittock EC, Schwarz-Linek U et al (2012) Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci U S A 109:E690–E697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Vidal O, Longin R, Prigent-Combaret C, Dorel C, Hooreman M et al (1998) Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol 180:2442–2449

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Zhong C, Gurry T, Cheng AA, Downey J, Deng Z et al (2014) Strong underwater adhesives made by self-assembling multi-protein nanofibres. Nat Nanotechnol 9:858–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Brubaker CE, Messersmith PB (2012) The present and future of biologically inspired adhesive interfaces and materials. Langmuir 28:2200–2205

    Article  CAS  PubMed  Google Scholar 

  177. Barlow DE, Dickinson GH, Orihuela B, Kulp JL, Rittschof D et al (2010) Characterization of the adhesive plaque of the barnacle Balanus amphitrite: amyloid-like nanofirils are a major component. Langmuir 26:6549–6556

    Article  CAS  PubMed  Google Scholar 

  178. Chen AY, Deng Z, Billings AN, Seker UO, Lu MY et al (2014) Synthesis and patterning of tunable multiscale materials with engineered cells. Nat Mater 13:515–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Callura JM, Cantor CR, Collins JJ (2012) Genetic switchboard for synthetic biology applications. Proc Natl Acad Sci U S A 109:5850–5855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Polman A, Atwater HA (2012) Photonic design principles for ultrahigh efficiency photovoltaics. Nat Mater 11:174–177

    Article  CAS  PubMed  Google Scholar 

  181. Zhang L, Conway JF, Thibodeau PH (2012) Calcium-induced folding and stabilization of the Pseudomonas aeruginosa alkaline protease. J Biol Chem 287:4311–4322

    Article  CAS  PubMed  Google Scholar 

  182. Zhang L, Franks J, Stolz DB, Conway JF, Thibodeau PH (2014) Inducible polymerization and two-dimensional assembly of the repeats-in-toxin (RTX) domain from the Pseudomonas aeruginosa alkaline protease. Biochemistry 53:6452–6462

    Article  CAS  PubMed  Google Scholar 

  183. Lilie H, Haehnel W, Rudolph R, Baumann U (2000) Folding of a synthetic parallel beta-roll protein. FEBS Lett 470:173–177

    Article  CAS  PubMed  Google Scholar 

  184. Welch RA, Forestier C, Lobo A, Pellett S, Thomas W Jr et al (1992) The synthesis and function of the Escherichia coli hemolysin and related RTX exotoxins. FEMS Microbiol Immunol 5:29–36

    Article  CAS  PubMed  Google Scholar 

  185. Villaverde A, Carrio MM (2003) Protein aggregation in recombinant bacteria: biological role of inclusion bodies. Biotechnol Lett 25:1385–1395

    Article  CAS  PubMed  Google Scholar 

  186. Marston FAO (1986) The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem J 240:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Carrió M, González-Montalbán N, Vera A, Villaverde A, Ventura S (2005) Amyloid-like properties of bacterial inclusion bodies. J Mol Biol 347:1025–1037

    Article  PubMed  CAS  Google Scholar 

  188. Morell M, Bravo R, Espargaro A, Sisquella X, Aviles FX et al (2008) Inclusion bodies: specificity in their aggregation process and amyloid-like structure. Biochim Biophys Acta 1783:1815–1825

    Article  CAS  PubMed  Google Scholar 

  189. Garcia-Fruitos E, Gonzalez-Montalban N, Morell M, Vera A, Ferraz RM et al (2005) Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb Cell Factories 4:27

    Article  CAS  Google Scholar 

  190. Mitraki A (2010) Protein aggregation from inclusion bodies to amyloid and biomaterials. Adv Protein Chem Struct Biol 79:89–125

    Article  CAS  PubMed  Google Scholar 

  191. Peternel S, Grdadolnik J, Gaberc-Porekar V, Komel R (2008) Engineering inclusion bodies for non denaturing extraction of functional proteins. Microb Cell Factories 7:34

    Article  CAS  Google Scholar 

  192. Vazquez E, Corchero JL, Burgueno JF, Seras-Franzoso J, Kosoy A et al (2012) Functional inclusion bodies produced in bacteria as naturally occurring nanopills for advanced cell therapies. Adv Mater 24:1742–1747

    Article  CAS  PubMed  Google Scholar 

  193. Cano-Garrido O, Rodriguez-Carmona E, Diez-Gil C, Vazquez E, Elizondo E et al (2013) Supramolecular organization of protein-releasing functional amyloids solved in bacterial inclusion bodies. Acta Biomater 9:6134–6142

    Article  CAS  PubMed  Google Scholar 

  194. Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K et al (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325:328–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Maji SK, Schubert D, Rivier C, Lee S, Rivier JE et al (2008) Amyloid as a depot for the formulation of long-acting drugs. PLoS Biol 6:e17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Peralta MD, Karsai A, Ngo A, Sierra C, Fong KT et al (2015) Engineering amyloid fibrils from beta-solenoid proteins for biomaterials applications. ACS Nano 9:449–463

    Article  CAS  PubMed  Google Scholar 

  197. Greer AM, Huang Z, Oriakhi A, Lu Y, Lou J et al (2009) The Drosophila transcription factor ultrabithorax self-assembles into protein-based biomaterials with multiple morphologies. Biomacromolecules 10:829–837

    Article  CAS  PubMed  Google Scholar 

  198. Gosal WS, Clark AH, Ross-Murphy SB (2004) Fibrillar beta-lactoglobulin gels: part 1. Fibril formation and structure. Biomacromolecules 5:2408–2419

    Article  CAS  PubMed  Google Scholar 

  199. Li C, Born AK, Schweizer T, Zenobi-Wong M, Cerruti M et al (2014) Amyloid-hydroxyapatite bone biomimetic composites. Adv Mater 26:3207–3212

    Article  CAS  PubMed  Google Scholar 

  200. Ling S, Li C, Adamcik J, Shao Z, Chen X et al (2014) Modulating materials by orthogonally oriented beta-strands: composites of amyloid and silk fibroin fibrils. Adv Mater 26:4569–4574

    Article  CAS  PubMed  Google Scholar 

  201. Jacob RS, Ghosh D, Singh PK, Basu SK, Jha NN et al (2015) Self healing hydrogels composed of amyloid nano fibrils for cell culture and stem cell differentiation. Biomaterials 54:97–105

    Article  CAS  PubMed  Google Scholar 

  202. Reynolds NP, Charnley M, Mezzenga R, Hartley PG (2014) Engineered lysozyme amyloid fibril networks support cellular growth and spreading. Biomacromolecules 15:599–608

    Article  CAS  PubMed  Google Scholar 

  203. Reynolds NP, Charnley M, Bongiovanni MN, Hartley PG, Gras SL (2015) Biomimetic topography and chemistry control cell attachment to amyloid fibrils. Biomacromolecules 16:1556–1565

    Article  CAS  PubMed  Google Scholar 

  204. Malisauskas M, Meskys R, Morozova-Roche LA (2008) Ultrathin silver nanowires produced by amyloid biotemplating. Biotechnol Prog 24:1166–1170

    Article  CAS  PubMed  Google Scholar 

  205. Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300:625–627

    Article  CAS  PubMed  Google Scholar 

  206. Scheibel T, Parthasarathy R, Sawicki G, Lin XM, Jaeger H et al (2003) Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc Natl Acad Sci U S A 100:4527–4532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Knowles TP, Oppenheim TW, Buell AK, Chirgadze DY, Welland ME (2010) Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nat Nanotechnol 5:204–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Men D, Guo YC, Zhang ZP, Wei HP, Zhou YF et al (2009) Seeding-induced self-assembling protein nanowires dramatically increase the sensitivity of immunoassays. Nano Lett 9:2246–2250

    Article  CAS  PubMed  Google Scholar 

  209. Men D, Zhang ZP, Guo YC, Zhu DH, Bi LJ et al (2010) An auto-biotinylated bifunctional protein nanowire for ultra-sensitive molecular biosensing. Biosens Bioelectron 26:1137–1141

    Article  CAS  PubMed  Google Scholar 

  210. Silva RF, Araujo DR, Silva ER, Ando RA, Alves WA (2013) L-diphenylalanine microtubes as a potential drug-delivery system: characterization, release kinetics, and cytotoxicity. Langmuir 29:10205–10212

    Article  CAS  PubMed  Google Scholar 

  211. Loo Y, Wong YC, Cai EZ, Ang CH, Raju A et al (2014) Ultrashort peptide nanofibrous hydrogels for the acceleration of healing of burn wounds. Biomaterials 35:4805–4814

    Article  CAS  PubMed  Google Scholar 

  212. Ikezoe Y, Washino G, Uemura T, Kitagawa S, Matsui H (2012) Autonomous motors of a metal-organic framework powered by reorganization of self-assembled peptides at interfaces. Nat Mater 11:1081–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA et al (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355

    Article  CAS  PubMed  Google Scholar 

  214. Kisiday J, Jin M, Kurz B, Hung H, Semino C et al (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci U S A 99:9996–10001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Holmes TC, de Lacalle S, Su X, Liu G, Rich A et al (2000) Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci U S A 97:6728–6733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Reynolds NP, Styan KE, Easton CD, Li Y, Waddington L et al (2013) Nanotopographic surfaces with defined surface chemistries from amyloid fibril networks can control cell attachment. Biomacromolecules 14:2305–2316

    Article  CAS  PubMed  Google Scholar 

  217. Baxa U, Speransky V, Steven AC, Wickner RB (2002) Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein. Proc Natl Acad Sci U S A 99:5253–5260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Gras SL, Tickler AK, Squires AM, Devlin GL, Horton MA et al (2008) Functionalised amyloid fibrils for roles in cell adhesion. Biomaterials 29:1553–1562

    Article  CAS  PubMed  Google Scholar 

  219. Bongiovanni MN, Scanlon DB, Gras SL (2011) Functional fibrils derived from the peptide TTR1-cycloRGDfK that target cell adhesion and spreading. Biomaterials 32:6099–6110

    Article  CAS  PubMed  Google Scholar 

  220. Yang Z, Liang G, Wang L, Xu B (2006) Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo. J Am Chem Soc 128:3038–3043

    Article  CAS  PubMed  Google Scholar 

  221. Koffie RM, Meyer-Luehmann M, Hashimoto T, Adams KW, Mielke ML et al (2009) Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci U S A 106:4012–4017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Collins SR, Douglass A, Vale RD, Weissman JS (2004) Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol 2:e321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Chen SG, Stribinskis V, Rane MJ, Demuth DR, Gozal E et al (2016) Exposure to the functional bacterial amyloid protein Curli enhances alpha-Synuclein aggregation in aged Fischer 344 rats and Caenorhabditis elegans. Sci Rep 6:34477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Solomon A, Richey T, Murphy CL, Weiss DT, Wall JS et al (2007) Amyloidogenic potential of foie gras. Proc Natl Acad Sci U S A 104:10998–11001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Otzen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Christensen, L.F.B., Schafer, N., Wolf-Perez, A., Madsen, D.J., Otzen, D.E. (2019). Bacterial Amyloids: Biogenesis and Biomaterials. In: Perrett, S., Buell, A., Knowles, T. (eds) Biological and Bio-inspired Nanomaterials. Advances in Experimental Medicine and Biology, vol 1174. Springer, Singapore. https://doi.org/10.1007/978-981-13-9791-2_4

Download citation

Publish with us

Policies and ethics