Skip to main content

DNA Nanotechnology for Building Sensors, Nanopores and Ion-Channels

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1174))

Abstract

DNA nanotechnology has revolutionised the capabilities to shape and control three-dimensional structures at the nanometre scale. Designer sensors, nanopores and ion-channels built from DNA have great potential for both cross-disciplinary research and applications. Here, we introduce the concept of structural DNA nanotechnology, including DNA origami, and give an overview of the work flow from design to assembly, characterisation and application of DNA-based functional systems. Chemical functionalisation of DNA has opened up pathways to transform static DNA structures into dynamic nanomechanical sensors. We further introduce nanopore sensing as a powerful label-free single-molecule technique and discuss how it can benefit from DNA nanotechnology. Especially exciting is the possibility to create membrane-inserted DNA nanochannels that mimic their protein-based natural counterparts in form and function. In this chapter we review the status quo of DNA sensors, nanopores and ion channels, highlighting opportunities and challenges for their future development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids. Nature 171:737–738

    Article  CAS  PubMed  Google Scholar 

  2. Holliday R (1964) A mechanism for gene conversion in fungi. Genet Res 5:282–304

    Article  Google Scholar 

  3. Doniger J, Warner RC, Tessma I (1973) Role of circular dimer DNA in the primary recombination mechanism of bacteriophage S13. Nat New Biol 242:9–12

    Article  CAS  PubMed  Google Scholar 

  4. Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99:237–247

    Article  CAS  PubMed  Google Scholar 

  5. Seeman NC, Kallenbach NR (1983) Design of immobile nucleic acid junctions. Biophys J 44:201–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yan H, Park SH, Finkelstein G, Reif JH, Labean TH (2003) DNA-templated self-assembly of conductive nanowires. Science 301:1882–1884

    Article  CAS  PubMed  Google Scholar 

  7. Zheng J, Birktoft JJ, Chen Y, Wang T, Sha R et al (2009) From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461:74–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Winfree E, Liu F, Wenzler LA, Seeman NC (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394:539–544

    Article  CAS  PubMed  Google Scholar 

  9. Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol 2:2041–2053

    Article  CAS  Google Scholar 

  10. Park SH, Pistol C, Ahn SJ, Reif JH, Lebeck AR et al (2006) Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures. Angew Chem Int Ed 45:735–739

    Article  CAS  Google Scholar 

  11. Liu D, Wang M, Deng Z, Walulu R, Mao C (2004) Tensegrity: construction of rigid DNA triangles with flexible four-arm DNA junctions. J Am Chem Soc 126:2324–2325

    Article  CAS  PubMed  Google Scholar 

  12. Tesoro S, Göpfrich K, Kartanas T, Keyser UF, Ahnert SE (2016) Non-deterministic self-assembly with asymmetric interactions. Phys Rev E 94:1–8

    Article  CAS  Google Scholar 

  13. Yin P, Hariadi RF, Sahu S, Choi HMT, Park SH et al (2008) Programming DNA tube circumferences. Science 321:824–826

    Article  CAS  PubMed  Google Scholar 

  14. Wei B, Dai M, Yin P (2012) Complex shapes self-assembled from single-stranded DNA tiles. Nature 485:623–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ke Y, Ong LL, Shih WM, Yin P (2012) Three-dimensional structures self-assembled from DNA bricks. Science 338:1177–1183

    Article  CAS  PubMed  Google Scholar 

  16. Yan H, LaBean TH, Feng L, Reif JH (2003) Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc Natl Acad Sci 100:8103–8108

    Article  CAS  PubMed  Google Scholar 

  17. Shih WM, Quispe JD, Joyce GF (2004) A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427:618–621

    Article  CAS  PubMed  Google Scholar 

  18. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  CAS  PubMed  Google Scholar 

  19. Douglas SM, Dietz H, Liedl T, Högberg B, Graf F et al (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459:414–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dietz H, Douglas SM, Shih WM (2009) Folding DNA into twisted and curved nanoscale shapes. Science 325:725–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Benson E, Mohammed A, Gardell J, Masich S, Czeizler E et al (2015) DNA rendering of polyhedral meshes at the nanoscale. Nature 523:441–444

    Article  CAS  PubMed  Google Scholar 

  22. Douglas SM, Marblestone AH, Teerapittayanon S, Vazquez A, Church GM et al (2009) Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res 37:5001–5006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Said H, Schüller VJ, Eber FJ, Wege C, Liedl T et al (2013) M1.3 – a small scaffold for DNA origami. Nanoscale 5:284–290

    Article  CAS  PubMed  Google Scholar 

  24. Brown S, Majikes J, Martínez A, Girón TM, Fennell H et al (2015) An easy-to-prepare mini-scaffold for DNA origami. Nanoscale 7:16621–16624

    Article  CAS  PubMed  Google Scholar 

  25. Ke Y, Douglas SM, Liu M, Sharma J, Cheng A et al (2009) Multilayer DNA origami packed on a square lattice. J Am Chem Soc 131:15903–15908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Castro CE, Kilchherr F, Kim D-N, Shiao EL, Wauer T et al (2011) A primer to scaffolded DNA origami. Nat Methods 8:221–229

    Article  CAS  PubMed  Google Scholar 

  27. List J, Weber M, Simmel FC (2014) Hydrophobic actuation of a DNA origami bilayer structure. Angew Chem Int Ed 53:4236–4239

    Article  CAS  Google Scholar 

  28. Funke JJ, Dietz H (2015) Placing molecules with Bohr radius resolution using DNA origami. Nat Nanotechnol 11:47–52

    Article  PubMed  CAS  Google Scholar 

  29. Liedl T, Högberg B, Tytell J, Ingber DE, Shih WM (2010) Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nat Nanotechnol 5:520–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Andersen ES, Dong M, Nielsen MM, Jahn K, Lind-Thomsen A et al (2008) DNA origami design of dolphin-shaped structures with flexible tails. ACS Nano 2:1213–1218

    Article  CAS  PubMed  Google Scholar 

  31. Williams S, Lund K, Lin C, Wonka P, Lindsay S et al (2009) Tiamat: a three-dimensional editing tool for complex DNA structures. Springer, Heidelberg

    Google Scholar 

  32. Pan K, Kim D-N, Zhang F, Adendorff MR, Yan H et al (2014) Lattice-free prediction of three-dimensional structure of programmed DNA assemblies. Nat Commun 5:5578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Steffen C, Thomas K, Huniar U, Hellweg A, Rubner O et al (2010) TmoleX–a graphical user interface for TURBOMOLE. J Comput Chem 31:2967–2970

    CAS  PubMed  Google Scholar 

  34. Martin TG, Dietz H (2012) Magnesium-free self-assembly of multi-layer DNA objects. Nat Commun 3:1103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Burns JR, Al-Juffali N, Janes SM, Howorka S (2014) Membrane-spanning DNA nanopores with cytotoxic effect. Angew Chem Int Ed 53:12466–12470

    Article  CAS  Google Scholar 

  36. Göpfrich K, Zettl T, Meijering AEC, Hernández-Ainsa S, Kocabey S et al (2015) DNA-tile structures lead to ionic currents through lipid membranes. Nano Lett 15:3134–3138

    Article  PubMed  CAS  Google Scholar 

  37. Jungmann R, Liedl T, Sobey TL, Shih W, Simmel FC (2008) Isothermal assembly of DNA origami structures using denaturing agents. J Am Chem Soc 130:10062–10063

    Article  CAS  PubMed  Google Scholar 

  38. Sobczak J-PJ, Martin TG, Gerling T, Dietz H (2012) Rapid folding of DNA into nanoscale shapes at constant temperature. Science 338:1458–1461

    Article  CAS  PubMed  Google Scholar 

  39. Shaw A, Benson E, Högberg B (2015) Purification of functionalized DNA origami nanostructures. ACS Nano 9:4968–4975

    Article  CAS  PubMed  Google Scholar 

  40. Glasel J (1995) Validity of nucleic acid purities monitored by A260/A280 absorbance ratios. Biotechniques 18:62–63

    CAS  PubMed  Google Scholar 

  41. Beer (1852) Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten. Ann Phys Chem 86:78–88

    Article  Google Scholar 

  42. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  43. Göpfrich K, Zettl T, Meijering AEC, Hernández-Ainsa S, Kocabey S et al (2015) DNA-tile structures lead to ionic currents through lipid membranes. Nano Lett 15:3134–3138

    Article  PubMed  CAS  Google Scholar 

  44. Burns JR, Göpfrich K, Wood JW, Thacker VV, Stulz E et al (2013) Lipid-bilayer-spanning DNA nanopores with a bifunctional porphyrin anchor. Angew Chem Int Ed 52:12069–12072

    Article  CAS  Google Scholar 

  45. Dunn KE, Dannenberg F, Ouldridge TE, Kwiatkowska M, Turberfield AJ et al (2015) Guiding the folding pathway of DNA origami. Nature 525:82–86

    Article  CAS  PubMed  Google Scholar 

  46. Holmes DL, Stellwagen NC (1990) The electric field dependence of DNA mobilities in agarose gels: a reinvestigation. Electrophoresis 11:5–15

    Article  CAS  PubMed  Google Scholar 

  47. Holmes DL, Stellwagen NC (1991) Estimation of polyacrylamide gel pore size from Ferguson plots of linear DNA fragments. II. Comparison of gels with different crosslinker concentrations, added agarose and added linear polyacrylamide. Electrophoresis 12:612–619

    Article  CAS  PubMed  Google Scholar 

  48. Pernodet N, Maaloum M, Tinland B (1997) Pore size of agarose gels by atomic force microscopy. Electrophoresis 18:55–58

    Article  CAS  PubMed  Google Scholar 

  49. Pluen A, Netti PA, Jain RK, Berk DA (1999) Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations. Biophys J 77:542–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Berne BJ, Pecora R (2000) Dynamic light scattering, 2nd edn. Dover Publications, Inc., New York

    Google Scholar 

  51. Göpfrich K, Li C-Y, Ricci M, Bhamidimarri SP, Yoo J et al (2016) Large-conductance transmembrane porin made from DNA origami. ACS Nano 10(9):8207–8214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hansma HG, Revenko I, Kim K, Laney DE (1996) Atomic force microscopy of long and short double-stranded, single-stranded and triple-stranded nucleic acids. Nucleic Acids Res 24:713–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moreno-Herrero F, Colchero J, Baró AM (2003) DNA height in scanning force microscopy. Ultramicroscopy 96:167–174

    Article  CAS  PubMed  Google Scholar 

  54. Kuzuya A, Sakai Y, Yamazaki T, Xu Y, Komiyama, M (2011) Nanomechanical DNA origami ‘single-molecule beacons’ directly imaged by atomic force microscopy. Nat Commun 2:449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Arivazhagan R, Endo M, Hidaka K, Tao Tran PL, Teulade-Fichou M-P et al (2014) G-quadruplex-binding ligand-induced DNA synapsis inside a DNA origami frame. RSC Adv 4:6346–6355

    Article  CAS  Google Scholar 

  56. Kocabey S, Kempter S, List J, Xing Y, Bae W et al (2015) Membrane-assisted growth of DNA origami nanostructure arrays. ACS Nano 9:3530–3539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lyubchenko Y, Shlyakhtenko L, Ando T (2011) Imaging of nucleic acids with atomic force microscopy. Methods 54:274–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Han D, Pal S, Liu Y, Yan H (2010) Folding and cutting DNA into reconfigurable topological nanostructures. Nat Nanotechnol 5:712–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Williams DB, Carter CB (1996) Transmission electron microscopy. Plenum Press, New York

    Book  Google Scholar 

  60. Bai X-C, Martin TG, Scheres SHW, Dietz H (2012) Cryo-EM structure of a 3D DNA-origami object. Proc Natl Acad Sci 109:20012–20017

    Article  CAS  PubMed  Google Scholar 

  61. Langecker M, Arnaut V, Martin TG, List J, Renner S et al (2012) Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338:932–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jungmann R, Avendaño MS, Woehrstein JB, Dai M, Shih WM et al (2014) Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and exchange-PAINT. Nat Methods 11:313–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dai M (2017) DNA-PAINT super-resolution imaging for nucleic acid nanostructures. In: Ke Y, Wang P (eds) 3D DNA nanostructure: nethods and protocols. Humana Press, New York, pp 185–202

    Chapter  Google Scholar 

  64. Fu J, Yang YR, Johnson-Buck A, Liu M, Liu Y et al (2014) Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. Nat Nanotechnol 9:531–536

    Article  CAS  PubMed  Google Scholar 

  65. Voigt NV, Tørring T, Rotaru A, Jacobsen MF, Ravnsbæk JB et al (2010) Single-molecule chemical reactions on DNA origami. Nat Nanotechnol 5:200–203

    Article  CAS  PubMed  Google Scholar 

  66. Bell NAW, Keyser UF (2016) Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores. Nat Nanotechnol 11:645–651

    Article  CAS  PubMed  Google Scholar 

  67. Chen Y-J, Groves B, Muscat RA, Seelig G (2015) DNA nanotechnology from the test tube to the cell. Nat Nanotechnol 10:748–760

    Article  CAS  PubMed  Google Scholar 

  68. Stephanopoulos N, Freeman R, North HA, Sur S, Jeong SJ et al (2015) Bioactive DNA-peptide nanotubes enhance the differentiation of neural stem cells into neurons. Nano Lett 15:603–609

    Article  CAS  PubMed  Google Scholar 

  69. Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335:831–834

    Article  CAS  PubMed  Google Scholar 

  70. Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller E-M et al (2012) DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483:311–314

    Article  CAS  PubMed  Google Scholar 

  71. Thacker VV, Herrmann LO, Sigle DO, Zhang T, Liedl T et al (2014) DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat Commun 5:3448

    Article  PubMed  CAS  Google Scholar 

  72. Kuzyk A, Yang Y, Duan X, Stoll S, Govorov AO et al (2016) A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function. Nat Commun 7:10591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Weller L, Thacker VV, Herrmann LO, Hemmig EA, Lombardi A et al (2016) Gap-dependent coupling of Ag-Au nanoparticle heterodimers using DNA origami-based self-assembly. ACS Photonics 3(9):1589–1595

    Article  CAS  Google Scholar 

  74. Pal S, Deng Z, Ding B, Yan H, Liu Y (2010) DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures. Angew Chem Int Ed 49:2700–2704

    Article  CAS  Google Scholar 

  75. Schreiber R, Do J, Roller E-M, Zhang T, Schüller VJ et al (2014) Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. Nat Nanotechnol 9:74–78

    Article  CAS  PubMed  Google Scholar 

  76. Tan SJ, Campolongo MJ, Luo D, Cheng W (2011) Building plasmonic nanostructures with DNA. Nat Nanotechnol 6:268–276

    Article  CAS  PubMed  Google Scholar 

  77. Tian Y, Zhang Y, Wang T, Xin HL, Li H et al (2016) Lattice engineering through nanoparticle–DNA frameworks. Nat Mater 15:654–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Maune HT, Han S-P, Barish RD, Bockrath M, Lii WAG et al (2010) Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat Nanotechnol 5:61–66

    Article  CAS  PubMed  Google Scholar 

  79. Liu J, Geng Y, Pound E, Gyawali S, Ashton JR et al (2011) Metallization of branched DNA origami for nanoelectronic circuit fabrication. ACS Nano 5:2240–2247

    Article  CAS  PubMed  Google Scholar 

  80. Hernández-Ainsa S, Ricci M, Hilton L, Aviñó A, Eritja R et al (2016) Controlling the reversible assembly of liposomes through a multistimuli responsive anchored DNA. Nano Lett 16:4462–4466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Yao D, Li H, Guo Y, Zhou X, Xiao S et al (2016) A pH-responsive DNA nanomachine controlled catalytic assembly of gold nanoparticles. Chem Commun 52:7556–7559

    Article  CAS  Google Scholar 

  82. Hemmig EA, Creatore C, Wünsch B, Hecker L, Mair P et al (2016) Programming light-harvesting efficiency using DNA origami. Nano Lett 16:2369–2374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schmied JJ, Raab M, Forthmann C, Pibiri E, Wünsch B et al (2014) DNA origami-based standards for quantitative fluorescence microscopy. Nat Protoc 9:1367–1391

    Article  CAS  PubMed  Google Scholar 

  84. Yang Y, Wang J, Shigematsu H, Xu W, Shih WM et al (2016) Self-assembly of size-controlled liposomes on DNA nanotemplates. Nat Chem 8:476–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Czogalla A, Kauert DJ, Franquelim HG, Uzunova V, Zhang Y et al (2015) Amphipathic DNA origami nanoparticles to scaffold and deform lipid membrane vesicles. Angew Chem Int Ed 54:6501–6505

    Article  CAS  Google Scholar 

  86. Pedersen RO, Kong J, Achim C, LaBean TH (2015) Comparative incorporation of PNA into DNA nanostructures. Molecules 20:17645–17658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M et al (2012) Synthetic genetic polymers capable of heredity and evolution. Science 336(6079):341–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pinheiro VB, Holliger P (2014) Towards XNA nanotechnology: new materials from synthetic genetic polymers. Trends Biotechnol 32:321–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yurke B, Turberfield AJ, Mills AP, Simmel FC, Neumann JL (2006) A DNA-fulled molecular machine made of DNA. Nature 128:10092–10102

    Google Scholar 

  90. Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z et al (2001) Programmable and autonomous computing machine made of biomolecules. Nature 414:430–434

    Article  CAS  PubMed  Google Scholar 

  91. Zhang DY, Turberfield AJ, Yurke B, Winfree E (2007) Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318:1121–1125

    Article  CAS  PubMed  Google Scholar 

  92. Bath J, Turberfield AJ (2007) DNA nanomachines. Nat Nanotechnol 2:275–284

    Article  CAS  PubMed  Google Scholar 

  93. Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109(5):1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chandrasekaran AR, Wady H, Subramanian HKK (2016) Nucleic acid nanostructures for chemical and biological sensing. Small 12:2689–2700

    Article  CAS  PubMed  Google Scholar 

  95. Torabi S-F, Lu Y (2011) Small-molecule diagnostics based on functional DNA nanotechnology: a dipstick test for mercury. Faraday Discuss 149:125–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chandrasekaran AR, Zavala J, Halvorsen K (2016) Programmable DNA nanoswitches for detection of nucleic acid sequences. ACS Sens 1:120–123

    Article  CAS  Google Scholar 

  97. Koirala D, Shrestha P, Emura T, Hidaka K, Mandal S et al (2014) Single-molecule mechanochemical sensing using DNA origami nanostructures. Angew Chem Int Ed 53:8137–8141

    Article  CAS  Google Scholar 

  98. Ke Y, Meyer T, Shih WM, Bellot G (2016) Regulation at a distance of biomolecular interactions using a DNA origami nanoactuator. Nat Commun 7:10935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. You M, Peng L, Shao N, Zhang L, Qiu L et al (2014) DNA “nano-claw”: logic-based autonomous cancer targeting and therapy. J Am Chem Soc 136:1256–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tintore M, Gallego I, Manning B, Eritja R, Fabrega C (2013) DNA origami as a DNA repair nanosensor at the single-molecule level. Angew Chem Int Ed 52:7747–7750

    Article  CAS  Google Scholar 

  101. Chen SX, Zhang DY, Seelig G (2013) Conditionally fluorescent molecular probes for detecting single base changes in double-stranded DNA. Nat Chem 5:782–789

    Article  CAS  PubMed  Google Scholar 

  102. Sannohe Y, Endo M, Katsuda Y, Hidaka K, Sugiyama H (2010) Visualization of dynamic conformational switching of the G-quadruplex in a DNA nanostructure. J Am Chem Soc 132:16311–16313

    Article  CAS  PubMed  Google Scholar 

  103. Miyake Y, Togashi H, Tashiro M, Yamaguchi H, Oda S et al (2006) MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes. J Am Chem Soc 128:2172–2173

    Article  CAS  PubMed  Google Scholar 

  104. Wang X, Yang C, Zhu S, Yan M, Ge S et al (2016) 3D origami electrochemical device for sensitive Pb2+ testing based on DNA functionalized iron-porphyrinic metal-organic framework. Biosens Bioelectron 87:108–115

    Article  PubMed  CAS  Google Scholar 

  105. Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E (2004) An autonomous molecular computer for logical control of gene expression. Nature 429:423–429

    Article  CAS  PubMed  Google Scholar 

  106. Rudchenko M, Taylor S, Pallavi P, Dechkovskaia A, Khan S et al (2013) Autonomous molecular cascades for evaluation of cell surfaces. Nat Nanotechnol 8:580–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Amir Y, Ben-Ishay E, Levner D, Ittah S, Abu-Horowitz A et al (2014) Universal computing by DNA origami robots in a living animal. Nat Nanotechnol 9:353–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Modi S, Nizak C, Surana S, Halder S, Krishnan Y (2013) Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. Nat Nanotechnol 8:459–467

    Article  CAS  PubMed  Google Scholar 

  109. Modi S, M G S, Goswami D, Gupta GD, Mayor S et al (2009) A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat Nanotechnol 4:325–330

    Article  CAS  PubMed  Google Scholar 

  110. Keyser UF (2011) Controlling molecular transport through nanopores. J R Soc 8:1369–1378

    Article  CAS  Google Scholar 

  111. Coulter WH (1953) Patent US2656508 A: means for counting particles suspended in a fluid

    Google Scholar 

  112. DeBlois RW, Bean CP (1970) Counting and sizing of submicron particles by the resistive pulse technique. Rev Sci Instrum 41:909–916

    Article  Google Scholar 

  113. Kubitschek HE (1958) Electronic counting and sizing of bacteria. Nature 182:234–235

    Article  CAS  PubMed  Google Scholar 

  114. Bezrukov SM, Vodyanoy I, Parsegian VA (1994) Counting polymers moving through a single ion channel. Nature 370(6487):279–281

    Article  CAS  PubMed  Google Scholar 

  115. Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H et al (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866

    Article  CAS  PubMed  Google Scholar 

  116. Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci 93:13770–13773

    Article  CAS  PubMed  Google Scholar 

  117. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Venkatesan BM, Bashir R (2011) Nanopore sensors for nucleic acid analysis. Nat Nanotechnol 6:615–624

    Article  CAS  PubMed  Google Scholar 

  119. Wanunu M (2012) Nanopores: a journey towards DNA sequencing. Phys Life Rev 9:125–158

    Article  PubMed  PubMed Central  Google Scholar 

  120. Pennisi E (2012) Search for Pore-fection. Science 336:534–537

    Article  CAS  PubMed  Google Scholar 

  121. Meller A, Nivon L, Brandin E, Golovchenko J, Branton D (2000) Rapid nanopore discrimination between single polynucleotide molecules. Proc Natl Acad Sci 97:1079–1084

    Article  CAS  PubMed  Google Scholar 

  122. Bayley H, Cremer PS (2001) Stochastic sensors inspired by biology. Nature 413:226–230

    Article  CAS  PubMed  Google Scholar 

  123. Cherf GM, Lieberman KR, Rashid H, Lam CE, Karplus K et al (2012) Automated forward and reverse ratcheting of DNA in a nanopore at five angstrom precision. Nat Biotechnol 30:344–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fonslow BR, Stein BD, Webb KJ, Xu T, Choi J et al (2013) Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat Biotechnol 10:54–56

    CAS  Google Scholar 

  125. Clarke J, Wu H-C, Jayasinghe L, Patel A, Reid S et al (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265–270

    Article  CAS  PubMed  Google Scholar 

  126. Feng Y, Zhang Y, Ying C, Wang D, Du C (2015) Nanopore-based fourth-generation DNA sequencing technology. Genomics Proteomics Bioinformatics 13:4–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Loose M, Malla S, Stout M (2016) Real time selective sequencing using nanopore technology. Nat Methods 13:751–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Szalay T, Golovchenko JA (2015) De novo sequencing and variant calling with nanopores using PoreSeq. Nat Biotechnol 33:1–7

    Article  CAS  Google Scholar 

  129. Loman NJ, Quick J, Simpson JT (2015) A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 12:733–735

    Article  CAS  PubMed  Google Scholar 

  130. Daims H, Lebedeva E, Pjevac P, Han P, Herbold C et al (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E et al (2016) Real-time, portable genome sequencing for Ebola surveillance. Nature 530:228–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Dunn A (2015) Sequencing DNA in the palm of your hand. NASA. Accessed 27 Jul 2016. https://www.nasa.gov/mission_pages/station/research/news/biomolecule_sequencer

    Google Scholar 

  133. Gu LQ, Braha O, Conlan S, Cheley S, Bayley H (1999) Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398:686–690

    Article  CAS  PubMed  Google Scholar 

  134. Braha O, Gu LQ, Zhou L, Lu X, Cheley S et al (2000) Simultaneous stochastic sensing of divalent metal ions. Nat Biotechnol 18:1005–1007

    Article  CAS  PubMed  Google Scholar 

  135. Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C (2003) Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater 2:537–540

    Article  CAS  PubMed  Google Scholar 

  136. Li J, Stein D, McMullan C, Branton D, Aziz MJ et al (2001) Ion-beam sculpting at nanometre length scales. Nature 412:166–169

    Article  CAS  PubMed  Google Scholar 

  137. Garaj S, Hubbard W, Reina A, Kong J, Branton D et al (2010) Graphene as a subnanometre trans-electrode membrane. Nature 467:190–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Heerema SJ, Dekker C (2016) Graphene nanodevices for DNA sequencing. Nat Nanotechnol 11:127–136

    Article  CAS  PubMed  Google Scholar 

  139. Steinbock LJ, Otto O, Chimerel C, Gornall J, Keyser UF (2010) Detecting DNA folding with nanocapillaries. Nano Lett 10:2493–2497

    Article  CAS  PubMed  Google Scholar 

  140. Li W, Bell NAW, Herna S, Bujdoso R, Keyser UF (2013) Single protein molecule detection by glass nanopores. ACS Nano 7:4129–4134

    Article  CAS  PubMed  Google Scholar 

  141. Keyser UF, Koeleman BN, van Dorp S, Krapf D, Smeets RMM et al (2006) Direct force measurements on DNA in a solid-state nanopore. Nat Phys 2:473–477

    Article  CAS  Google Scholar 

  142. Wanunu M, Meller A (2007) Chemically modified solid-state nanopores. Nano Lett 7:1580–1585

    Article  CAS  PubMed  Google Scholar 

  143. Kohli P, Harrell CC, Cao Z, Gasparac R, Tan W et al (2004) DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science 305:984–986

    Article  CAS  PubMed  Google Scholar 

  144. Jovanovic-Talisman T, Tetenbaum-Novatt J, McKenney AS, Zilman A, Peters R et al (2009) Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature 457:1023–1027

    Article  CAS  PubMed  Google Scholar 

  145. Movileanu L (2009) Interrogating single proteins through nanopores: challenges and opportunities. Trends Biotechnol 27:333–341

    Article  CAS  PubMed  Google Scholar 

  146. Keyser UF (2016) Enhancing nanopore sensing with DNA nanotechnology. Nat Nanotechnol 11:106–108

    Article  CAS  PubMed  Google Scholar 

  147. Bell NAW, Keyser UF (2015) Specific protein detection using designed DNA carriers and nanopores. J Am Chem Soc 137:2035–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kong J, Bell NAW, Keyser UF (2016) Quantifying nanomolar protein concentrations using designed DNA carriers and solid-state nanopores. Nano Lett 16:3557–3562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bell NAW, Keyser UF (2016) Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores.Nat Nanotechnol 11:1–28

    Article  CAS  PubMed  Google Scholar 

  150. Bell NAW, Engst CR, Ablay M, Divitini G, Ducati C et al (2012) DNA origami nanopores. Nano Lett 12:512–517

    Article  CAS  PubMed  Google Scholar 

  151. Wei R, Martin TG, Rant U, Dietz H (2012) DNA origami gatekeepers for solid-state nanopores. Angew Chem Int Ed 124:4948–4951

    Article  Google Scholar 

  152. Hall AR, Scott A, Rotem D, Mehta KK, Bayley H et al (2010) Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores. Nat Nanotechnol 5:874–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hernández-Ainsa S, Keyser UF (2014) DNA origami nanopores: developments, challenges and perspectives. Nanoscale 6:14121–14132

    Article  PubMed  CAS  Google Scholar 

  154. Hernández-Ainsa S, Bell NAW, Thacker VV, Göpfrich K, Misiunas K et al (2013) DNA origami nanopores for controlling DNA translocation. ACS Nano 7:6024–6030

    Article  PubMed  CAS  Google Scholar 

  155. Bell NAW, Thacker VV, Hernández-Ainsa S, Fuentes-Perez ME, Moreno-Herrero F et al (2013) Multiplexed ionic current sensing with glass nanopores. Lab Chip 13:1859–1862

    Article  CAS  PubMed  Google Scholar 

  156. Steinbock LJ, Otto O, Skarstam DR, Jahn S, Chimerel C et al (2010) Probing DNA with micro- and nanocapillaries and optical tweezers. J Phys Condens Matter 22:454113

    Article  CAS  PubMed  Google Scholar 

  157. Hernández-Ainsa S, Misiunas K, Thacker VV, Hemmig EA, Keyser UF (2014) Voltage-dependent properties of DNA origami nanopores. Nano Lett 14:1270–1274

    Article  PubMed  CAS  Google Scholar 

  158. Haque F, Wang S, Stites C, Chen L, Wang C et al (2015) Single pore translocation of folded, double-stranded, and tetra-stranded DNA through channel of bacteriophage phi29 DNA packaging motor. Biomaterials 53:744–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Leung C, Hodel AW, Brennan AJ, Lukoyanova N, Tran S (2017) Real-time visualization of perforin nanopore assembly. Nat Nanotechnol 12:467–473

    Article  CAS  PubMed  Google Scholar 

  160. Seifert A, Göpfrich K, Burns JR, Fertig N, Keyser UF et al (2014) Bilayer-spanning DNA nanopores with voltage-switching between open and closed state. ACS Nano 9:1117–1126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Bell NAW, Keyser UF (2014) Nanopores formed by DNA origami: a review. FEBS Lett 588:3564–3570

    Article  CAS  PubMed  Google Scholar 

  162. Li CY, Hemmig EA, Kong J, Yoo J, Keyser UF et al (2015) Ionic conductivity, structural deformation and programmable anisotropy of DNA origami in electric field. ACS Nano 9:1420–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Plesa C, Ananth AN, Linko V, Gulcher C, Katan A et al (2014) Ionic permeability and mechanical properties of DNA origami nanoplates. ACS Nano 8:35–43

    Article  CAS  PubMed  Google Scholar 

  164. Baker M (2010) Making membrane proteins for structures: a trillion tiny tweaks. Nat Methods 7:429–434

    Article  CAS  PubMed  Google Scholar 

  165. Knowles MR, Stutts MJ, Spock A, Fischer N, Gatzy JT et al (1983) Abnormal ion permeation through cystic fibrosis. Science 221:1067–1070

    Article  CAS  PubMed  Google Scholar 

  166. Feske S (2007) Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 7:690–702

    Article  CAS  PubMed  Google Scholar 

  167. Fernandez-Lopez S, Kim HS, Choi EC, Delgado M, Granja JR et al (2001) Antibacterial agents based on the cyclic D,L-alpha-peptide architecture. Nature 412:452–455

    Article  CAS  PubMed  Google Scholar 

  168. Czogalla A, Franquelim HG, Schwille P (2016) DNA nanostructures on membranes as tools for synthetic biology. Biophys J 110:1698–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hille B (2001) Ion channels of excitable membranes. Palgrave Macmillan, Sunderland

    Google Scholar 

  170. Benz R (ed) (2004) Bacterial and eukaryotic porins WILEY-VCH Verlag GmbH & Co KGaA, Weinheim

    Google Scholar 

  171. Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y et al (2000) The yeast nuclear pore complex. J Cell Biol 148:635–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Fyles TM (2007) Synthetic ion channels in bilayer membranes. Chem Soc Rev 36:335–347

    Article  CAS  PubMed  Google Scholar 

  173. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM et al (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  CAS  PubMed  Google Scholar 

  174. Hucho F, Weise C (2001) Ligand-gated ion channels. Angew Chem Int Ed 40:3100–3116

    Article  CAS  Google Scholar 

  175. Jiang Y, Lee A, Chen J, Cadene M, Chait BT et al (2002) The open pore conformation of potassium channels. Nature 417:523–546

    Article  CAS  PubMed  Google Scholar 

  176. Carpenter EP, Beis K, Cameron AD, Iwata S (2008) Overcoming the challenges of membrane protein crystallography. Curr Opinion Struct Biol 18:581–586

    Article  CAS  Google Scholar 

  177. White SH (1998–2019) Membrane proteins of known 3D structure, Stephen White laboratory, UC Irvine. Accessed 27 Jul 2016. https://blanco.biomol.uci.edu/mpstruc/

    Google Scholar 

  178. Sakai N, Matile S (2013) Synthetic ion channels. Langmuir 29:9031–9040

    Article  CAS  PubMed  Google Scholar 

  179. Pedersen CJ (1988) The discovery of crown ethers (Nobel address). Angew Chem Int Ed 27:1021–1027

    Article  Google Scholar 

  180. Chimerel C, Field CM, Piñero-Fernandez S, Keyser UF, Summers DK (2012) Indole prevents Escherichia coli cell division by modulating membrane potential. Biochim Biophys Acta Biomembr 1818:1590–1594

    Article  CAS  Google Scholar 

  181. Kennedy SJ, Roeske RW, Freeman AR, Watanabe AM, Besche HR (1977) Synthetic peptides form ion channels in artificial lipid bilayer membranes. Science 196:1341–1342

    Article  CAS  PubMed  Google Scholar 

  182. Wallace DP, Tomich JM, Eppler JW, Iwamoto T, Grantham JJ et al (2000) A synthetic channel-forming peptide induces Cl- secretion: modulation by Ca2+-dependent K+ channels. Biochim Biophys Acta Biomembr 1464:69–82

    Article  CAS  Google Scholar 

  183. Tabushi I, Kuroda Y, Yokota K (1982) A,B,D,F-tetrasubstituted β-cyclodextrin as artificial channel compound. Tetrahedron Lett 23:4601–4604

    Article  CAS  Google Scholar 

  184. Mamad-Hemouch H, Ramoul H, Abou Taha M, Bacri L, Huin C et al (2015) Biomimetic nanotubes based on cyclodextrins for ion-channel applications. Nano Lett 15:7748–7754

    Article  CAS  PubMed  Google Scholar 

  185. Fyles TM, Loock D, Zhou X (1998) A voltage-gated ion channel based on a bis-macrocyclic bolaamphiphile. J Am Chem Soc 7863:2997–3003

    Article  Google Scholar 

  186. Carmichael VE, Dutton PJ, Fyles TM, James TD, Swan JA et al (1989) Biomimetic ion transport: a functional model of a unimolecular ion channel. J Am Chem Soc 111(2):767–769

    Article  CAS  Google Scholar 

  187. Tanaka Y, Kobuke Y, Sokabe M (1995) A non-peptidic ion channel with K+ selectivity. Angew Chem Int Ed 34:693–694

    Article  CAS  Google Scholar 

  188. Geng J, Kim K, Zhang J, Escalada A, Tunuguntla R et al (2014) Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes. Nature 514:612–615

    Article  CAS  PubMed  Google Scholar 

  189. Göpfrich K, Li C-Y, Mames I, Bhamidimarri SP, Ricci M et al (2016) Ion channels made from a single membrane-spanning DNA duplex. Nano Lett 16:4665–4669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Göpfrich K, Li C-Y, Ricci M, Bhamidimarri SP, Yoo J et al (2016) Large-conductance transmembrane porin made from DNA origami. ACS Nano 10:8207–8214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Burns JR, Stulz E, Howorka S (2013) Self-assembled DNA nanopores that span lipid bilayers. Nano Lett 13:2351–2356

    Article  CAS  PubMed  Google Scholar 

  192. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802

    Article  CAS  PubMed  Google Scholar 

  193. Gutsmann T, Heimburg T, Keyser U, Mahendran KR, Winterhalter M (2015) Protein reconstitution into freestanding planar lipid membranes for electrophysiological characterization. Nat Protoc 10:188–198

    Article  PubMed  Google Scholar 

  194. Burns JR, Seifert A, Fertig N, Howorka S (2016) A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane. Nat Nanotechnol 11:152–156

    Article  CAS  PubMed  Google Scholar 

  195. Krishnan S, Ziegler D, Arnaut V, Martin TG, Kapsner K et al (2016) Molecular transport through large-diameter DNA nanopores. Nat Commun 7:12787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Maingi V, Lelimousi M, Howorka S, Sansom MSP (2015) Gating-like motions and wall porosity in a DNA nanopore scaffold revealed by molecular simulations. ACS Nano 9:11209–11217

    Article  CAS  PubMed  Google Scholar 

  197. Yoo J, Aksimentiev A (2015) Molecular dynamics of membrane-spanning DNA channels: conductance mechanism, electro-osmotic transport, and mechanical gating. J Phys Chem Lett 6:4680–4687

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.G. acknowledges funding from the Winton Programme for the Physics of Sustainability, Gates Cambridge and the Oppenheimer PhD studentship, U.F.K. from an ERC Consolidator Grant (Designerpores 647144) and Oxford Nanopore Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich F. Keyser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Göpfrich, K., Keyser, U.F. (2019). DNA Nanotechnology for Building Sensors, Nanopores and Ion-Channels. In: Perrett, S., Buell, A., Knowles, T. (eds) Biological and Bio-inspired Nanomaterials. Advances in Experimental Medicine and Biology, vol 1174. Springer, Singapore. https://doi.org/10.1007/978-981-13-9791-2_11

Download citation

Publish with us

Policies and ethics